Show simple item record

contributor authorFarokhi, Hamed
contributor authorGhayesh, Mergen H.
date accessioned2019-09-18T09:05:23Z
date available2019-09-18T09:05:23Z
date copyright4/12/2019 12:00:00 AM
date issued2019
identifier issn0021-8936
identifier otherjam_86_7_071001.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258727
description abstractIn this study, a new geometrically exact nonlinear model is developed for accurate analysis of buckling and postbuckling behavior of beams, for the first time. Three-dimensional nonlinear finite element analysis is conducted to verify the validity of the developed model even at very large postbuckling amplitudes. It is shown that the model commonly used in the literature for buckling analysis significantly underestimates the postbuckling amplitude. The proposed model is developed on the basis of the beam theory of Euler–Bernoulli, along with the assumption of centerline inextensibility, while taking into account the effect of initial imperfection. The Kelvin–Voigt model is utilized to model internal energy dissipation. To ensure accurate predictions in the postbuckling regime, the nonlinear terms in the equation of motion are kept exact with respect to the transverse motion, resulting in a geometrically exact model. It is shown that even a fifth-order truncated nonlinear model does not yield accurate results, highlighting the significant importance of keeping the terms exact with respect to the transverse motion. Using the verified geometrically exact model, the possibility of dynamic buckling is studied in detail. It is shown that dynamic buckling could occur at axial load variation amplitudes as small as 2.3% of the critical static buckling load.
publisherAmerican Society of Mechanical Engineers (ASME)
titleA New Geometrically Exact Model for Buckling and Postbuckling Statics and Dynamics of Beams
typeJournal Paper
journal volume86
journal issue7
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.4043144
journal fristpage71001
journal lastpage071001-10
treeJournal of Applied Mechanics:;2019:;volume( 086 ):;issue: 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record