YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analyses of Constitutive Behavior of As-Cast Aluminum Alloys AA3104, AA5182, and AA6111 During Direct Chill Casting Using Physically Based Models

    Source: Journal of Engineering Materials and Technology:;2019:;volume 141:;issue 003::page 34502
    Author:
    Soni, Aman
    ,
    Alankar, Alankar
    DOI: 10.1115/1.4042869
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: To understand the formation of direct chill (DC)-casting defects, e.g., butt curl and crack formation, it is essential to take into account the effect of temperature variation, strain rate, and their role in the constitutive behavior of the DC-cast alloys. For the correct prediction of defects due to thermal stresses during DC casting, one needs to rely on the fundamentals of mechanisms that may be relevant to the temperatures at below solidus temperatures. This research work aims to find a suitable physically based model for the as-cast aluminum alloys, namely AA3104, AA5182, and AA6111, which can describe the constitutive behavior at below solidus temperatures during complex loading conditions of temperatures and strain rates. In the present work, an earlier measured and modeled (Alankar and Wells, 2010, “Constitutive Behavior of As-Cast Aluminum Alloys AA3104, AA5182 and AA6111 at Below Solidus Temperatures,” Mater. Sci. Eng. A, 527, pp. 7812–7820) stress–strain data are analyzed using the Voce equation and Kocks–Mecking (KM) model. KM model is capable of predicting the hardening and recovery behavior during complex conditions of strain, strain rate, and temperatures during DC casting. Recovery is dependent on temperature and strain rate, and thus, relevant parameters are determined based on the temperature-sensitive annihilation rate of dislocations. For the KM model, we have estimated k1 parameter as a function of temperature, and k2 has been further modeled based on the temperature and strain rate. KM model is able to fit the constant temperature uniaxial tests within 1.5% of the regenerated data.
    • Download: (686.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analyses of Constitutive Behavior of As-Cast Aluminum Alloys AA3104, AA5182, and AA6111 During Direct Chill Casting Using Physically Based Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258506
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorSoni, Aman
    contributor authorAlankar, Alankar
    date accessioned2019-09-18T09:04:16Z
    date available2019-09-18T09:04:16Z
    date copyright3/13/2019 12:00:00 AM
    date issued2019
    identifier issn0094-4289
    identifier othermats_141_3_034502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258506
    description abstractTo understand the formation of direct chill (DC)-casting defects, e.g., butt curl and crack formation, it is essential to take into account the effect of temperature variation, strain rate, and their role in the constitutive behavior of the DC-cast alloys. For the correct prediction of defects due to thermal stresses during DC casting, one needs to rely on the fundamentals of mechanisms that may be relevant to the temperatures at below solidus temperatures. This research work aims to find a suitable physically based model for the as-cast aluminum alloys, namely AA3104, AA5182, and AA6111, which can describe the constitutive behavior at below solidus temperatures during complex loading conditions of temperatures and strain rates. In the present work, an earlier measured and modeled (Alankar and Wells, 2010, “Constitutive Behavior of As-Cast Aluminum Alloys AA3104, AA5182 and AA6111 at Below Solidus Temperatures,” Mater. Sci. Eng. A, 527, pp. 7812–7820) stress–strain data are analyzed using the Voce equation and Kocks–Mecking (KM) model. KM model is capable of predicting the hardening and recovery behavior during complex conditions of strain, strain rate, and temperatures during DC casting. Recovery is dependent on temperature and strain rate, and thus, relevant parameters are determined based on the temperature-sensitive annihilation rate of dislocations. For the KM model, we have estimated k1 parameter as a function of temperature, and k2 has been further modeled based on the temperature and strain rate. KM model is able to fit the constant temperature uniaxial tests within 1.5% of the regenerated data.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleAnalyses of Constitutive Behavior of As-Cast Aluminum Alloys AA3104, AA5182, and AA6111 During Direct Chill Casting Using Physically Based Models
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4042869
    journal fristpage34502
    journal lastpage034502-9
    treeJournal of Engineering Materials and Technology:;2019:;volume 141:;issue 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian