YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Experimental and Numerical Study of Dieless Water Jet Incremental Microforming

    Source: Journal of Manufacturing Science and Engineering:;2019:;volume( 141 ):;issue: 004::page 41008
    Author:
    Shi, Yi
    ,
    Zhang, Weizhao
    ,
    Cao, Jian
    ,
    Ehmann, Kornel F.
    DOI: 10.1115/1.4042790
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Conventional single-point incremental forming (SPIF) is already in use for small batch prototyping and fabrication of customized parts from thin sheet metal blanks by inducing plastic deformation with a rigid round-tip tool. The major advantages of the SPIF process are its high flexibility and die-free nature. In lieu of employing a rigid tool to incrementally form the sheet metal, a high-speed water jet as an alternative was proposed as the forming tool. Since there is no tool-workpiece contact in this process, unlike in the traditional SPIF process, no lubricant and rotational motion of the tool are required to reduce friction. However, the geometry of the part formed by water jet incremental microforming (WJIMF) will no longer be controlled by the motion of the rigid tool. On the contrary, process parameters such as water jet pressure, stage motion speed, water jet diameter, blank thickness, and tool path design will determine the final shape of the workpiece. This paper experimentally studies the influence of the above-mentioned key process parameters on the geometry of a truncated cone shape and on the corresponding surface quality. A numerical model is proposed to predict the shape of the truncated cone part after WJIMF with given input process parameters. The results prove that the formed part's geometric properties predicted by the numerical model are in excellent agreement with the actually measured ones. Arrays of miniature dots, channels, two-level truncated cones, and letters were also successfully fabricated on stainless-steel foils to demonstrate WJIMF capabilities.
    • Download: (1.154Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Experimental and Numerical Study of Dieless Water Jet Incremental Microforming

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258449
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorShi, Yi
    contributor authorZhang, Weizhao
    contributor authorCao, Jian
    contributor authorEhmann, Kornel F.
    date accessioned2019-09-18T09:03:58Z
    date available2019-09-18T09:03:58Z
    date copyright2/28/2019 12:00:00 AM
    date issued2019
    identifier issn1087-1357
    identifier othermanu_141_4_041008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258449
    description abstractConventional single-point incremental forming (SPIF) is already in use for small batch prototyping and fabrication of customized parts from thin sheet metal blanks by inducing plastic deformation with a rigid round-tip tool. The major advantages of the SPIF process are its high flexibility and die-free nature. In lieu of employing a rigid tool to incrementally form the sheet metal, a high-speed water jet as an alternative was proposed as the forming tool. Since there is no tool-workpiece contact in this process, unlike in the traditional SPIF process, no lubricant and rotational motion of the tool are required to reduce friction. However, the geometry of the part formed by water jet incremental microforming (WJIMF) will no longer be controlled by the motion of the rigid tool. On the contrary, process parameters such as water jet pressure, stage motion speed, water jet diameter, blank thickness, and tool path design will determine the final shape of the workpiece. This paper experimentally studies the influence of the above-mentioned key process parameters on the geometry of a truncated cone shape and on the corresponding surface quality. A numerical model is proposed to predict the shape of the truncated cone part after WJIMF with given input process parameters. The results prove that the formed part's geometric properties predicted by the numerical model are in excellent agreement with the actually measured ones. Arrays of miniature dots, channels, two-level truncated cones, and letters were also successfully fabricated on stainless-steel foils to demonstrate WJIMF capabilities.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleAn Experimental and Numerical Study of Dieless Water Jet Incremental Microforming
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4042790
    journal fristpage41008
    journal lastpage041008-10
    treeJournal of Manufacturing Science and Engineering:;2019:;volume( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian