YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design and Analysis of a Multimodal Grasper Having Shape Conformity and Within-Hand Manipulation With Adjustable Contact Forces

    Source: Journal of Mechanisms and Robotics:;2019:;volume( 011 ):;issue: 005::page 51012
    Author:
    Govindan, Nagamanikandan
    ,
    Thondiyath, Asokan
    DOI: 10.1115/1.4044163
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents the design, analysis, and testing of a novel multimodal grasper having the capabilities of shape conformation, within-hand manipulation, and a built-in compact mechanism to vary the forces at the contact surface. The proposed grasper has two important qualities: versatility and less complexity. The former refers to the ability to grasp a range of objects having different geometrical shape, size, and payload and perform in-hand manipulations such as rolling and sliding, and the latter refers to the uncomplicated design, and ease of planning and control strategies. Increasing the number of functions performed by the grasper to adapt to a variety of tasks in structured and unstructured environments without increasing the mechanical complexity is the main interest of this research. The proposed grasper consists of two hybrid jaws having a rigid inner structure encompassed by a flexible, active gripping surface. The flexibility of the active surface has been exploited to achieve shape conformation, and the same has been utilized with a compact mechanism, introduced in the jaws, to vary the contact forces while grasping and manipulating an object. Simple and scalable structure, compactness, low cost, and simple control scheme are the main features of the proposed design. Detailed kinematic and static analysis are presented to show the capability of the grasper to adjust and estimate the contact forces without using a force sensor. Experiments are conducted on the fabricated prototype to validate the different modes of operation and to evaluate the advantages of the proposed concept.
    • Download: (937.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design and Analysis of a Multimodal Grasper Having Shape Conformity and Within-Hand Manipulation With Adjustable Contact Forces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258341
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorGovindan, Nagamanikandan
    contributor authorThondiyath, Asokan
    date accessioned2019-09-18T09:03:24Z
    date available2019-09-18T09:03:24Z
    date copyright7/12/2019 12:00:00 AM
    date issued2019
    identifier issn1942-4302
    identifier otherjmr_11_5_051012
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258341
    description abstractThis paper presents the design, analysis, and testing of a novel multimodal grasper having the capabilities of shape conformation, within-hand manipulation, and a built-in compact mechanism to vary the forces at the contact surface. The proposed grasper has two important qualities: versatility and less complexity. The former refers to the ability to grasp a range of objects having different geometrical shape, size, and payload and perform in-hand manipulations such as rolling and sliding, and the latter refers to the uncomplicated design, and ease of planning and control strategies. Increasing the number of functions performed by the grasper to adapt to a variety of tasks in structured and unstructured environments without increasing the mechanical complexity is the main interest of this research. The proposed grasper consists of two hybrid jaws having a rigid inner structure encompassed by a flexible, active gripping surface. The flexibility of the active surface has been exploited to achieve shape conformation, and the same has been utilized with a compact mechanism, introduced in the jaws, to vary the contact forces while grasping and manipulating an object. Simple and scalable structure, compactness, low cost, and simple control scheme are the main features of the proposed design. Detailed kinematic and static analysis are presented to show the capability of the grasper to adjust and estimate the contact forces without using a force sensor. Experiments are conducted on the fabricated prototype to validate the different modes of operation and to evaluate the advantages of the proposed concept.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleDesign and Analysis of a Multimodal Grasper Having Shape Conformity and Within-Hand Manipulation With Adjustable Contact Forces
    typeJournal Paper
    journal volume11
    journal issue5
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4044163
    journal fristpage51012
    journal lastpage051012-12
    treeJournal of Mechanisms and Robotics:;2019:;volume( 011 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian