YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Toward Future Installations: Mutual Interactions of Short Intakes With Modern High Bypass Fans

    Source: Journal of Turbomachinery:;2019:;volume 141:;issue 008
    Author:
    Vadlamani, Nagabhushana Rao
    ,
    Cao, Teng
    ,
    Watson, Rob
    ,
    Tucker, Paul G.
    DOI: 10.1115/1.4044080
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we investigate the coupled interaction between a new short intake design with a modern fan in a high-bypass ratio civil engine, specifically under the off-design condition of high incidence. The interaction is expected to be much more significant than that on a conventional intake. The performance of both the intake-alone and rotor-alone configurations are examined under isolation. Subsequently, a comprehensive understanding on the two-way interaction between intake and fan is presented. This includes the effect of fan on intake angles of attack (AoA) tolerance (FoI) and the effect of circumferential and radial flow distortion induced by the intake on the fan performance (IoF). In the FoI scenario, the rotor effectively redistributes the mass flow at the fan-face. The AoA tolerance of the short-intake design has increased by ≈4 deg when compared with the intake-alone configuration. Dynamic nature of distortion due to shock unsteadiness has been quantified. ST plots and power spectral density (PSD) of pressure fluctuations show the existence of a spectral gap between the shock unsteadiness and blade passing, with almost an order of magnitude difference in the corresponding frequencies. In the IoF scenario, both the “large” (O(360 deg)) and “small” scale distortion (O(10–60 deg)) induced by the intake results in a non-uniform inflow to the rotor. Sector analysis reveals a substantial variation in the local operating condition of the fan as opposed to its steady characteristic. Streamline curvature, upwash, and wake thickening are identified to be the three key factors affecting the fan performance. These underlying mechanisms are discussed in detail to provide further insights into the physical understanding of the fan-intake interaction. In addition to the shock-induced separation on the intake lip, the current study shows that shorter intakes are much more prone to the upwash effect at higher AoA. Insufficient flow straightening along the engine axis is reconfirmed to be one of the limiting factors for the short-intake design.
    • Download: (1.708Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Toward Future Installations: Mutual Interactions of Short Intakes With Modern High Bypass Fans

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258313
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorVadlamani, Nagabhushana Rao
    contributor authorCao, Teng
    contributor authorWatson, Rob
    contributor authorTucker, Paul G.
    date accessioned2019-09-18T09:03:16Z
    date available2019-09-18T09:03:16Z
    date copyright7/26/2019 12:00:00 AM
    date issued2019
    identifier issn0889-504X
    identifier otherturbo_141_8_081013
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258313
    description abstractIn this paper, we investigate the coupled interaction between a new short intake design with a modern fan in a high-bypass ratio civil engine, specifically under the off-design condition of high incidence. The interaction is expected to be much more significant than that on a conventional intake. The performance of both the intake-alone and rotor-alone configurations are examined under isolation. Subsequently, a comprehensive understanding on the two-way interaction between intake and fan is presented. This includes the effect of fan on intake angles of attack (AoA) tolerance (FoI) and the effect of circumferential and radial flow distortion induced by the intake on the fan performance (IoF). In the FoI scenario, the rotor effectively redistributes the mass flow at the fan-face. The AoA tolerance of the short-intake design has increased by ≈4 deg when compared with the intake-alone configuration. Dynamic nature of distortion due to shock unsteadiness has been quantified. ST plots and power spectral density (PSD) of pressure fluctuations show the existence of a spectral gap between the shock unsteadiness and blade passing, with almost an order of magnitude difference in the corresponding frequencies. In the IoF scenario, both the “large” (O(360 deg)) and “small” scale distortion (O(10–60 deg)) induced by the intake results in a non-uniform inflow to the rotor. Sector analysis reveals a substantial variation in the local operating condition of the fan as opposed to its steady characteristic. Streamline curvature, upwash, and wake thickening are identified to be the three key factors affecting the fan performance. These underlying mechanisms are discussed in detail to provide further insights into the physical understanding of the fan-intake interaction. In addition to the shock-induced separation on the intake lip, the current study shows that shorter intakes are much more prone to the upwash effect at higher AoA. Insufficient flow straightening along the engine axis is reconfirmed to be one of the limiting factors for the short-intake design.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleToward Future Installations: Mutual Interactions of Short Intakes With Modern High Bypass Fans
    typeJournal Paper
    journal volume141
    journal issue8
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4044080
    treeJournal of Turbomachinery:;2019:;volume 141:;issue 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian