YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Use of Gas Flow Models to Predict Leak Rates Through Sheet Gasket Materials

    Source: Journal of Pressure Vessel Technology:;2019:;volume( 141 ):;issue: 005::page 51204
    Author:
    Bouzid, Abdel-Hakim
    ,
    Aweimer, Ali Salah Omar
    DOI: 10.1115/1.4044115
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: The prediction of leak rate through porous gaskets for different gases based on test conducted on a reference gas can prevent bolted joint leakage failure and save the industry lots of money. This work gives a basic comparison between different gas flow models that can be used to predict leak rates through porous gasket materials. The ability of a model to predict the leak rate at the micro- and nanolevels in tight gaskets relies on its capacity to incorporate different flow regimes that can be present under different working conditions. Four models based on Navier–Stokes equations that incorporate different boundary conditions and characterize specific flow regime are considered. The first- and second-order slip, diffusivity, and molecular flow models are used to predict and correlate leak rates of gases namely helium, nitrogen, SF6, methane, argon, and air passing through three frequently used porous gasket materials which are flexible graphite, polytetrafluoroethylene (PTFE), and compressed fiber. The methodology is based on the determination experimentally of the porosity parameter (N and R) of the microchannels assumed to simulate the leak paths present in the gasket using helium as the reference gas. The predicted leak rates of different gases at different stresses and pressure levels are confronted to the results obtained experimentally by measurements of leak rates using pressure rise and mass spectrometry techniques. The results show that the predictions depend on the type of flow regime that predominates. Nevertheless, the second-order slip model is the one that gives better agreements with the measured leaks in all cases.
    • Download: (2.587Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Use of Gas Flow Models to Predict Leak Rates Through Sheet Gasket Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258301
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorBouzid, Abdel-Hakim
    contributor authorAweimer, Ali Salah Omar
    date accessioned2019-09-18T09:03:13Z
    date available2019-09-18T09:03:13Z
    date copyright7/17/2019 12:00:00 AM
    date issued2019
    identifier issn0094-9930
    identifier otherpvt_141_05_051204
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258301
    description abstractThe prediction of leak rate through porous gaskets for different gases based on test conducted on a reference gas can prevent bolted joint leakage failure and save the industry lots of money. This work gives a basic comparison between different gas flow models that can be used to predict leak rates through porous gasket materials. The ability of a model to predict the leak rate at the micro- and nanolevels in tight gaskets relies on its capacity to incorporate different flow regimes that can be present under different working conditions. Four models based on Navier–Stokes equations that incorporate different boundary conditions and characterize specific flow regime are considered. The first- and second-order slip, diffusivity, and molecular flow models are used to predict and correlate leak rates of gases namely helium, nitrogen, SF6, methane, argon, and air passing through three frequently used porous gasket materials which are flexible graphite, polytetrafluoroethylene (PTFE), and compressed fiber. The methodology is based on the determination experimentally of the porosity parameter (N and R) of the microchannels assumed to simulate the leak paths present in the gasket using helium as the reference gas. The predicted leak rates of different gases at different stresses and pressure levels are confronted to the results obtained experimentally by measurements of leak rates using pressure rise and mass spectrometry techniques. The results show that the predictions depend on the type of flow regime that predominates. Nevertheless, the second-order slip model is the one that gives better agreements with the measured leaks in all cases.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleOn the Use of Gas Flow Models to Predict Leak Rates Through Sheet Gasket Materials
    typeJournal Paper
    journal volume141
    journal issue5
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4044115
    journal fristpage51204
    journal lastpage051204-9
    treeJournal of Pressure Vessel Technology:;2019:;volume( 141 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian