YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Methodology for Hemodynamic Assessment of a Three-Dimensional Printed Patient-Specific Vascular Test Device

    Source: Journal of Medical Devices:;2019:;volume( 013 ):;issue: 003::page 31011
    Author:
    D'Souza, Gavin A.
    ,
    Taylor, Michael D.
    ,
    Banerjee, Rupak K.
    DOI: 10.1115/1.4043992
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Assessing hemodynamics in vasculature is important for the development of cardiovascular diagnostic parameters and evaluation of medical devices. Benchtop experiments are a safe and comprehensive preclinical method for testing new diagnostic endpoints and devices within a controlled environment. Recent advances in three-dimensional (3D) printing have enhanced benchtop tests by allowing generation of patient-specific and pathophysiologic conditions. We used 3D printing, coupled with image processing and computer-aided design (CAD), to develop a patient-specific vascular test device from clinical data. The proximal pulmonary artery (PA) tree including the main, left, and right pulmonary arteries, with a stenosis within the left PA was selected as a representative anatomy for developing the vascular test device. Three test devices representing clinically relevant stenosis severities, 90%, 80%, and 70% area stenosis, were evaluated at different cardiac outputs (COs). A mock circulatory loop (MCL) generating pathophysiologic pulmonary pressure and flow was used to evaluate the hemodynamics within the devices. The dimensionless pressure drop–velocity ratio characteristic curves for the three stenosis severities were obtained. At a fixed CO, the dimensionless pressure drop increased nonlinearly with an increase in (a) the velocity ratio for a fixed stenosis severity and (b) the stenosis severity at a specific velocity ratio. The dimensionless pressure drop observed in vivo was similar (within 1%) to that measured in moderate area stenosis of 70% because both flows were viscous dominated. The hemodynamics of the 3D printed test device can be used for evaluating diagnostic endpoints and medical devices in a preclinical setting under realistic conditions.
    • Download: (1.429Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Methodology for Hemodynamic Assessment of a Three-Dimensional Printed Patient-Specific Vascular Test Device

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258250
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorD'Souza, Gavin A.
    contributor authorTaylor, Michael D.
    contributor authorBanerjee, Rupak K.
    date accessioned2019-09-18T09:02:54Z
    date available2019-09-18T09:02:54Z
    date copyright7/15/2019 12:00:00 AM
    date issued2019
    identifier issn1932-6181
    identifier othermed_013_03_031011
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258250
    description abstractAssessing hemodynamics in vasculature is important for the development of cardiovascular diagnostic parameters and evaluation of medical devices. Benchtop experiments are a safe and comprehensive preclinical method for testing new diagnostic endpoints and devices within a controlled environment. Recent advances in three-dimensional (3D) printing have enhanced benchtop tests by allowing generation of patient-specific and pathophysiologic conditions. We used 3D printing, coupled with image processing and computer-aided design (CAD), to develop a patient-specific vascular test device from clinical data. The proximal pulmonary artery (PA) tree including the main, left, and right pulmonary arteries, with a stenosis within the left PA was selected as a representative anatomy for developing the vascular test device. Three test devices representing clinically relevant stenosis severities, 90%, 80%, and 70% area stenosis, were evaluated at different cardiac outputs (COs). A mock circulatory loop (MCL) generating pathophysiologic pulmonary pressure and flow was used to evaluate the hemodynamics within the devices. The dimensionless pressure drop–velocity ratio characteristic curves for the three stenosis severities were obtained. At a fixed CO, the dimensionless pressure drop increased nonlinearly with an increase in (a) the velocity ratio for a fixed stenosis severity and (b) the stenosis severity at a specific velocity ratio. The dimensionless pressure drop observed in vivo was similar (within 1%) to that measured in moderate area stenosis of 70% because both flows were viscous dominated. The hemodynamics of the 3D printed test device can be used for evaluating diagnostic endpoints and medical devices in a preclinical setting under realistic conditions.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleMethodology for Hemodynamic Assessment of a Three-Dimensional Printed Patient-Specific Vascular Test Device
    typeJournal Paper
    journal volume13
    journal issue3
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.4043992
    journal fristpage31011
    journal lastpage031011-8
    treeJournal of Medical Devices:;2019:;volume( 013 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian