YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pad–Pivot Friction Effect on Nonlinear Response of a Rotor Supported by Tilting-Pad Journal Bearings

    Source: Journal of Tribology:;2019:;volume( 141 ):;issue: 009::page 91701
    Author:
    Kim, Sitae
    ,
    Palazzolo, Alan B.
    DOI: 10.1115/1.4043971
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a numerical study for nonlinear rotordynamic response with bifurcations of tilting pad journal bearings when pad–pivot friction forces are taken into account. A Stribeck friction model is employed to determine the friction coefficient for the contacts between the pads and the spherical-type pivots. The boundary/mixed/hydrodynamic friction mode is determined for each pad surface based on the instantaneous angular motion of the pads. A Jeffcott type rotor supported on 5-pad tilting pad journal bearings is used for the structural model, and finite element fluid film models are utilized to calculate the reaction forces and moments on the pads. The simulation results show that pad–pivot friction plays an important role in determining the stability of the rotor system. For the autonomous condition, the friction induces a Hopf bifurcation and generates limit cycles at high rotor spin speed (>14 krpm), which were originally stable equilibrium states with a no friction condition. For the nonautonomous condition, the 1× synchronous response becomes subsynchronous/quasiperiodic responses in the high-speed range (>14 krpm) with the appearances of Neimark-Sacker bifurcations. It is shown that the outbreak points and corresponding response types are highly dependent on the state of disk imbalance. A comparison of the linear and nonlinear models clearly illustrates the importance of retaining nonlinear forces to determine potential deleterious vibration.
    • Download: (1.171Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pad–Pivot Friction Effect on Nonlinear Response of a Rotor Supported by Tilting-Pad Journal Bearings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258232
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorKim, Sitae
    contributor authorPalazzolo, Alan B.
    date accessioned2019-09-18T09:02:49Z
    date available2019-09-18T09:02:49Z
    date copyright6/27/2019 12:00:00 AM
    date issued2019
    identifier issn0742-4787
    identifier othertrib_141_9_091701
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258232
    description abstractThis paper presents a numerical study for nonlinear rotordynamic response with bifurcations of tilting pad journal bearings when pad–pivot friction forces are taken into account. A Stribeck friction model is employed to determine the friction coefficient for the contacts between the pads and the spherical-type pivots. The boundary/mixed/hydrodynamic friction mode is determined for each pad surface based on the instantaneous angular motion of the pads. A Jeffcott type rotor supported on 5-pad tilting pad journal bearings is used for the structural model, and finite element fluid film models are utilized to calculate the reaction forces and moments on the pads. The simulation results show that pad–pivot friction plays an important role in determining the stability of the rotor system. For the autonomous condition, the friction induces a Hopf bifurcation and generates limit cycles at high rotor spin speed (>14 krpm), which were originally stable equilibrium states with a no friction condition. For the nonautonomous condition, the 1× synchronous response becomes subsynchronous/quasiperiodic responses in the high-speed range (>14 krpm) with the appearances of Neimark-Sacker bifurcations. It is shown that the outbreak points and corresponding response types are highly dependent on the state of disk imbalance. A comparison of the linear and nonlinear models clearly illustrates the importance of retaining nonlinear forces to determine potential deleterious vibration.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titlePad–Pivot Friction Effect on Nonlinear Response of a Rotor Supported by Tilting-Pad Journal Bearings
    typeJournal Paper
    journal volume141
    journal issue9
    journal titleJournal of Tribology
    identifier doi10.1115/1.4043971
    journal fristpage91701
    journal lastpage091701-12
    treeJournal of Tribology:;2019:;volume( 141 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian