YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Isomorphism Detection of Planar Kinematic Chains With Multiple Joints Using Information Theory

    Source: Journal of Mechanical Design:;2019:;volume( 141 ):;issue: 010::page 102303
    Author:
    Rai, Rajneesh Kumar
    ,
    Punjabi, Sunil
    DOI: 10.1115/1.4043934
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Isomorphism (structural similarity) of kinematic chains (KCs) of mechanisms is an important issue in the structural synthesis, which must be identified to avoid the duplicate structures. Duplication causes incorrect family size, i.e., distinct KCs with a given number of links (n) and degree of freedom (dof). Besides simple joints kinematic chains (SJKCs), multiple joints kinematic chains (MJKCs) are also widely used because of their compact size and the methods dealing with such KCs are few. The proposed method deals with two different structural invariants, i.e., primary structural invariants (provide only the necessary condition of isomorphism), such as link connectivity number (LCN) of all the links, link connectivity number of chain (CCN), joint connectivity number (JCN) of all the joints, and joint connectivity number of chain (JCNC), and secondary structural invariants (provide the sufficient condition of isomorphism), such as power transmission (P) and transmission efficiency (Te). Primary structural invariants are calculated using a new link–link connectivity matrix (LLCM), whereas secondary structural invariants are calculated using the concept of entropy of information theory. The method has been successfully tested for 10 and 11 links MJKCs (illustrative examples taken in the paper) and for the families of 18 MJKCs with 8 links, 2 MJs, 1-dof, and 3 independent loops; 22 MJKCs with 8 links, 1 MJ, 1-dof, and 3 independent loops; and 83 MJKCs with 9 links, 1 MJ, 2-dof, and 3 independent loops.
    • Download: (307.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Isomorphism Detection of Planar Kinematic Chains With Multiple Joints Using Information Theory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258206
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorRai, Rajneesh Kumar
    contributor authorPunjabi, Sunil
    date accessioned2019-09-18T09:02:42Z
    date available2019-09-18T09:02:42Z
    date copyright7/22/2019 12:00:00 AM
    date issued2019
    identifier issn1050-0472
    identifier othermd_141_10_102303
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258206
    description abstractIsomorphism (structural similarity) of kinematic chains (KCs) of mechanisms is an important issue in the structural synthesis, which must be identified to avoid the duplicate structures. Duplication causes incorrect family size, i.e., distinct KCs with a given number of links (n) and degree of freedom (dof). Besides simple joints kinematic chains (SJKCs), multiple joints kinematic chains (MJKCs) are also widely used because of their compact size and the methods dealing with such KCs are few. The proposed method deals with two different structural invariants, i.e., primary structural invariants (provide only the necessary condition of isomorphism), such as link connectivity number (LCN) of all the links, link connectivity number of chain (CCN), joint connectivity number (JCN) of all the joints, and joint connectivity number of chain (JCNC), and secondary structural invariants (provide the sufficient condition of isomorphism), such as power transmission (P) and transmission efficiency (Te). Primary structural invariants are calculated using a new link–link connectivity matrix (LLCM), whereas secondary structural invariants are calculated using the concept of entropy of information theory. The method has been successfully tested for 10 and 11 links MJKCs (illustrative examples taken in the paper) and for the families of 18 MJKCs with 8 links, 2 MJs, 1-dof, and 3 independent loops; 22 MJKCs with 8 links, 1 MJ, 1-dof, and 3 independent loops; and 83 MJKCs with 9 links, 1 MJ, 2-dof, and 3 independent loops.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleIsomorphism Detection of Planar Kinematic Chains With Multiple Joints Using Information Theory
    typeJournal Paper
    journal volume141
    journal issue10
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4043934
    journal fristpage102303
    journal lastpage102303-12
    treeJournal of Mechanical Design:;2019:;volume( 141 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian