YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Noncommutativity of Finite Rotations and Definitions of Curvature and Torsion

    Source: Journal of Computational and Nonlinear Dynamics:;2019:;volume( 014 ):;issue: 009::page 91005
    Author:
    Shabana, Ahmed A.
    ,
    Ling, Hao
    DOI: 10.1115/1.4043726
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: The geometry of a space curve, including its curvature and torsion, can be uniquely defined in terms of only one parameter which can be the arc length parameter. Using the differential geometry equations, the Frenet frame of the space curve is completely defined using the curve equation and the arc length parameter only. Therefore, when Euler angles are used to describe the curve geometry, these angles are no longer independent and can be expressed in terms of one parameter as field variables. The relationships between Euler angles used in the definition of the curve geometry are developed in a closed-differential form expressed in terms of the curve curvature and torsion. While the curvature and torsion of a space curve are unique, the Euler-angle representation of the space curve is not unique because of the noncommutative nature of the finite rotations. Depending on the sequence of Euler angles used, different expressions for the curvature and torsion can be obtained in terms of Euler angles, despite the fact that only one Euler angle can be treated as an independent variable, and such an independent angle can be used as the curve parameter instead of its arc length, as discussed in this paper. The curve differential equations developed in this paper demonstrate that the curvature and torsion expressed in terms of Euler angles do not depend on the sequence of rotations only in the case of infinitesimal rotations. This important conclusion is consistent with the definition of Euler angles as generalized coordinates in rigid body dynamics. This paper generalizes this definition by demonstrating that finite rotations cannot be directly associated with physical geometric properties or deformation modes except in the cases when infinitesimal-rotation assumptions are used.
    • Download: (882.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Noncommutativity of Finite Rotations and Definitions of Curvature and Torsion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258041
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorShabana, Ahmed A.
    contributor authorLing, Hao
    date accessioned2019-09-18T09:01:47Z
    date available2019-09-18T09:01:47Z
    date copyright7/15/2019 12:00:00 AM
    date issued2019
    identifier issn1555-1415
    identifier othercnd_014_09_091005
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258041
    description abstractThe geometry of a space curve, including its curvature and torsion, can be uniquely defined in terms of only one parameter which can be the arc length parameter. Using the differential geometry equations, the Frenet frame of the space curve is completely defined using the curve equation and the arc length parameter only. Therefore, when Euler angles are used to describe the curve geometry, these angles are no longer independent and can be expressed in terms of one parameter as field variables. The relationships between Euler angles used in the definition of the curve geometry are developed in a closed-differential form expressed in terms of the curve curvature and torsion. While the curvature and torsion of a space curve are unique, the Euler-angle representation of the space curve is not unique because of the noncommutative nature of the finite rotations. Depending on the sequence of Euler angles used, different expressions for the curvature and torsion can be obtained in terms of Euler angles, despite the fact that only one Euler angle can be treated as an independent variable, and such an independent angle can be used as the curve parameter instead of its arc length, as discussed in this paper. The curve differential equations developed in this paper demonstrate that the curvature and torsion expressed in terms of Euler angles do not depend on the sequence of rotations only in the case of infinitesimal rotations. This important conclusion is consistent with the definition of Euler angles as generalized coordinates in rigid body dynamics. This paper generalizes this definition by demonstrating that finite rotations cannot be directly associated with physical geometric properties or deformation modes except in the cases when infinitesimal-rotation assumptions are used.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleNoncommutativity of Finite Rotations and Definitions of Curvature and Torsion
    typeJournal Paper
    journal volume14
    journal issue9
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4043726
    journal fristpage91005
    journal lastpage091005-10
    treeJournal of Computational and Nonlinear Dynamics:;2019:;volume( 014 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian