YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characterization and Impact of Secondary Flows in a Discrete Passage Centrifugal Compressor Diffuser

    Source: Journal of Turbomachinery:;2019:;volume 141:;issue 007::page 71009
    Author:
    Erickson, David W.
    ,
    Tan, Choon S.
    ,
    Macrorie, Michael
    DOI: 10.1115/1.4042646
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Truncating the exit of a discrete passage centrifugal compressor diffuser is observed to enhance a research compressor's stall line. By interrogating the experimental data along with a set of well-designed Reynolds-Averaged Navier–Stokes computations, this improvement is traced to the reduced impact of secondary flows on the truncated diffuser's boundary layer growth. The secondary flow system is characterized by counter-rotating streamwise vortex pairs that persist throughout the diffuser passage. The vortices originate from two sources: flow nonuniformity at the impeller exit and separation off the leading edge cusps unique to a discrete passage diffuser. The latter detrimentally impacts the diffuser pressure rise capability by accumulating high loss flow along the diffuser wall near the plane of symmetry between the vortices. This contributes to a large passage separation in the baseline diffuser. Using reduced-order modeling, the impact of the vortices on the boundary layer growth is shown to scale inversely with the diffuser aspect ratio, and thus, the separation extent is reduced for the truncated diffuser. Because the diffuser incidence angle influences the strength and location of the vortices, this mechanism can affect the slope of the compressor's pressure rise characteristic and impact its stall line. Stall onset for the baseline diffuser configuration is initiated when the vortex location and the corresponding passage separation transition from pressure to suction side with increased cusp incidence. Conversely, because the extent of the passage separation in the truncated diffuser is diminished, the switch in separation side does not immediately initiate instability.
    • Download: (1.297Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characterization and Impact of Secondary Flows in a Discrete Passage Centrifugal Compressor Diffuser

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257942
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorErickson, David W.
    contributor authorTan, Choon S.
    contributor authorMacrorie, Michael
    date accessioned2019-09-18T09:01:12Z
    date available2019-09-18T09:01:12Z
    date copyright2/26/2019 12:00:00 AM
    date issued2019
    identifier issn0889-504X
    identifier otherturbo_141_7_071009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257942
    description abstractTruncating the exit of a discrete passage centrifugal compressor diffuser is observed to enhance a research compressor's stall line. By interrogating the experimental data along with a set of well-designed Reynolds-Averaged Navier–Stokes computations, this improvement is traced to the reduced impact of secondary flows on the truncated diffuser's boundary layer growth. The secondary flow system is characterized by counter-rotating streamwise vortex pairs that persist throughout the diffuser passage. The vortices originate from two sources: flow nonuniformity at the impeller exit and separation off the leading edge cusps unique to a discrete passage diffuser. The latter detrimentally impacts the diffuser pressure rise capability by accumulating high loss flow along the diffuser wall near the plane of symmetry between the vortices. This contributes to a large passage separation in the baseline diffuser. Using reduced-order modeling, the impact of the vortices on the boundary layer growth is shown to scale inversely with the diffuser aspect ratio, and thus, the separation extent is reduced for the truncated diffuser. Because the diffuser incidence angle influences the strength and location of the vortices, this mechanism can affect the slope of the compressor's pressure rise characteristic and impact its stall line. Stall onset for the baseline diffuser configuration is initiated when the vortex location and the corresponding passage separation transition from pressure to suction side with increased cusp incidence. Conversely, because the extent of the passage separation in the truncated diffuser is diminished, the switch in separation side does not immediately initiate instability.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleCharacterization and Impact of Secondary Flows in a Discrete Passage Centrifugal Compressor Diffuser
    typeJournal Paper
    journal volume141
    journal issue7
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4042646
    journal fristpage71009
    journal lastpage071009-17
    treeJournal of Turbomachinery:;2019:;volume 141:;issue 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian