YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Temperature Model for Synchronized Ultrasonic Torrefaction and Pelleting of Biomass for Bioenergy Production

    Source: Journal of Energy Resources Technology:;2019:;volume 141:;issue 010::page 102205
    Author:
    Sun, Mingman
    ,
    Yang, Yang
    ,
    Zhang, Meng
    DOI: 10.1115/1.4043634
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Low-energy and volumetric density of biomass has been a major challenge, hindering its large-scale utilization as a bioenergy resource. Torrefaction is a thermochemical pretreatment process that can significantly enhance the properties of biomass as a fuel by increasing the heating value and thermal stability of biomass materials. Densification of biomass by pelleting can greatly increase the volumetric density of biomass to improve its handling efficiency. Currently, torrefaction and pelleting are processed separately. So far, there has been little success in dovetailing torrefaction and pelleting, which only requires a single material loading to produce torrefied pellets. Synchronized ultrasonic torrefaction and pelleting has been developed to address this challenge. Synchronized ultrasonic torrefaction and pelleting can produce pellets of high energy and volumetric density in a single step, which tremendously reduces the time and energy consumption compared to that required by the prevailing multistep method. This novel fuel upgrading process can increase the biomass temperature to 473–573 K within tens of seconds to create torrefaction. Studying the temperature distribution is crucial to understand the fuel upgrading mechanism since pellet energy density, thermal stability, volumetric density, and durability are all highly related to temperature. A rheological model was established to instantiate biomass behaviors when undergoing various ultrasonic vibration conditions. Process parameters including ultrasonic amplitude, ultrasonic frequency, and pelleting time were studied to show their effects on temperature at different locations in a pellet. Results indicated that the volumetric heat generation rate was greatly affected by both ultrasonic amplitude and frequency. This model can help to understand the fuel upgrading mechanism in synchronized ultrasonic torrefaction and pelleting and also to give guidelines for process optimization to produce high-quality fuel pellets.
    • Download: (410.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Temperature Model for Synchronized Ultrasonic Torrefaction and Pelleting of Biomass for Bioenergy Production

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257935
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorSun, Mingman
    contributor authorYang, Yang
    contributor authorZhang, Meng
    date accessioned2019-09-18T09:01:10Z
    date available2019-09-18T09:01:10Z
    date copyright5/14/2019 12:00:00 AM
    date issued2019
    identifier issn0195-0738
    identifier otherjert_141_10_102205
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257935
    description abstractLow-energy and volumetric density of biomass has been a major challenge, hindering its large-scale utilization as a bioenergy resource. Torrefaction is a thermochemical pretreatment process that can significantly enhance the properties of biomass as a fuel by increasing the heating value and thermal stability of biomass materials. Densification of biomass by pelleting can greatly increase the volumetric density of biomass to improve its handling efficiency. Currently, torrefaction and pelleting are processed separately. So far, there has been little success in dovetailing torrefaction and pelleting, which only requires a single material loading to produce torrefied pellets. Synchronized ultrasonic torrefaction and pelleting has been developed to address this challenge. Synchronized ultrasonic torrefaction and pelleting can produce pellets of high energy and volumetric density in a single step, which tremendously reduces the time and energy consumption compared to that required by the prevailing multistep method. This novel fuel upgrading process can increase the biomass temperature to 473–573 K within tens of seconds to create torrefaction. Studying the temperature distribution is crucial to understand the fuel upgrading mechanism since pellet energy density, thermal stability, volumetric density, and durability are all highly related to temperature. A rheological model was established to instantiate biomass behaviors when undergoing various ultrasonic vibration conditions. Process parameters including ultrasonic amplitude, ultrasonic frequency, and pelleting time were studied to show their effects on temperature at different locations in a pellet. Results indicated that the volumetric heat generation rate was greatly affected by both ultrasonic amplitude and frequency. This model can help to understand the fuel upgrading mechanism in synchronized ultrasonic torrefaction and pelleting and also to give guidelines for process optimization to produce high-quality fuel pellets.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleA Temperature Model for Synchronized Ultrasonic Torrefaction and Pelleting of Biomass for Bioenergy Production
    typeJournal Paper
    journal volume141
    journal issue10
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4043634
    journal fristpage102205
    journal lastpage102205-8
    treeJournal of Energy Resources Technology:;2019:;volume 141:;issue 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian