A Study of Keyhole Porosity in Selective Laser Melting: Single-Track Scanning With Micro-CT AnalysisSource: Journal of Manufacturing Science and Engineering:;2019:;volume( 141 ):;issue: 007::page 71004DOI: 10.1115/1.4043622Publisher: American Society of Mechanical Engineers (ASME)
Abstract: Porosity is an inherent attribute in selective laser melting (SLM) and profoundly degrades the build part quality and its performance. This study attempts to understand and characterize the keyhole pores formed during single-track scanning in SLM. First, 24 single tracks were generated using different line energy density (LED) levels, ranging from 0.1 J/mm to 0.98 J/mm, by varying the laser power and the scanning speed. The samples were then scanned by micro-computed tomography to measure keyhole pores and analyze the pore characteristics. The results show a general trend that the severity of the keyhole porosity increases with the increase of the LED with exceptions of certain patterns, implying important individual contributions from the parameters. Next, by keeping the LED constant in another set of experiments, different combinations of the power and the speed were tested to investigate the individual effect. Based on the results obtained, the laser power appears to have a greater effect than the scanning speed on both the pore number and the pore volume as well as the pore depth. For the same LED, the pore number and volume increase with increasing laser power until a certain critical level, beyond which, both the pore number and volume will decrease, if the power is further increased. For the LED of 0.32 J/mm, 0.4 J/mm, and 0.48 J/mm, the critical laser power that reverses the trend is about 132 W, 140 W, and 144 W, respectively.
|
Collections
Show full item record
contributor author | Shrestha, Subin | |
contributor author | Starr, Thomas | |
contributor author | Chou, Kevin | |
date accessioned | 2019-09-18T09:01:04Z | |
date available | 2019-09-18T09:01:04Z | |
date copyright | 5/14/2019 12:00:00 AM | |
date issued | 2019 | |
identifier issn | 1087-1357 | |
identifier other | manu_141_7_071004 | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4257918 | |
description abstract | Porosity is an inherent attribute in selective laser melting (SLM) and profoundly degrades the build part quality and its performance. This study attempts to understand and characterize the keyhole pores formed during single-track scanning in SLM. First, 24 single tracks were generated using different line energy density (LED) levels, ranging from 0.1 J/mm to 0.98 J/mm, by varying the laser power and the scanning speed. The samples were then scanned by micro-computed tomography to measure keyhole pores and analyze the pore characteristics. The results show a general trend that the severity of the keyhole porosity increases with the increase of the LED with exceptions of certain patterns, implying important individual contributions from the parameters. Next, by keeping the LED constant in another set of experiments, different combinations of the power and the speed were tested to investigate the individual effect. Based on the results obtained, the laser power appears to have a greater effect than the scanning speed on both the pore number and the pore volume as well as the pore depth. For the same LED, the pore number and volume increase with increasing laser power until a certain critical level, beyond which, both the pore number and volume will decrease, if the power is further increased. For the LED of 0.32 J/mm, 0.4 J/mm, and 0.48 J/mm, the critical laser power that reverses the trend is about 132 W, 140 W, and 144 W, respectively. | |
publisher | American Society of Mechanical Engineers (ASME) | |
title | A Study of Keyhole Porosity in Selective Laser Melting: Single-Track Scanning With Micro-CT Analysis | |
type | Journal Paper | |
journal volume | 141 | |
journal issue | 7 | |
journal title | Journal of Manufacturing Science and Engineering | |
identifier doi | 10.1115/1.4043622 | |
journal fristpage | 71004 | |
journal lastpage | 071004-11 | |
tree | Journal of Manufacturing Science and Engineering:;2019:;volume( 141 ):;issue: 007 | |
contenttype | Fulltext |