YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Instability of Incompatible Bilayered Soft Tissues and the Role of Interface Conditions

    Source: Journal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 010::page 101012
    Author:
    Emuna, Nir
    ,
    Durban, David
    DOI: 10.1115/1.4043560
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Mechanical stability analysis is instructive in explaining biological processes like morphogenesis, organogenesis, and pathogenesis of soft tissues. Consideration of the layered, residually stressed structure of tissues, requires accounting for the joint effects of interface conditions and layer incompatibility. This paper is concerned with the influence of imposed rate (incremental) interface conditions (RICs) on critical loads in soft tissues, within the context of linear bifurcation analysis. Aiming at simplicity, we analyze a model of bilayered isotropic hyperelastic (neo-Hookean) spherical shells with residual stresses generated by “shrink-fitting” two perfectly bonded layers with radial interfacial incompatibility. This setting allows a comparison between available, seemingly equivalent, interface conditions commonly used in the literature of layered media stability. We analytically determine the circumstances under which the interface conditions are equivalent or not, and numerically demonstrate significant differences between interface conditions with increasing level of layer incompatibility. Differences of more than tenfold in buckling and 30% in inflation instability critical loads are recorded using the different RICs. Contrasting instability characteristics are also revealed using the different RICs in the presence of incompatibility: inflation instability can occur before pressure maximum, and spontaneous instability may be excluded for thin shells. These findings are relevant to the growing body of stability studies of layered and residually stressed tissues. The impact of interface conditions on critical thresholds is significant in studies that use concepts of instability to draw conclusions about the normal development and the pathologies of tissues like arteries, esophagus, airways, and the brain.
    • Download: (1.430Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Instability of Incompatible Bilayered Soft Tissues and the Role of Interface Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257886
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorEmuna, Nir
    contributor authorDurban, David
    date accessioned2019-09-18T09:00:52Z
    date available2019-09-18T09:00:52Z
    date copyright7/29/2019 12:00:00 AM
    date issued2019
    identifier issn0148-0731
    identifier otherbio_141_10_101012
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257886
    description abstractMechanical stability analysis is instructive in explaining biological processes like morphogenesis, organogenesis, and pathogenesis of soft tissues. Consideration of the layered, residually stressed structure of tissues, requires accounting for the joint effects of interface conditions and layer incompatibility. This paper is concerned with the influence of imposed rate (incremental) interface conditions (RICs) on critical loads in soft tissues, within the context of linear bifurcation analysis. Aiming at simplicity, we analyze a model of bilayered isotropic hyperelastic (neo-Hookean) spherical shells with residual stresses generated by “shrink-fitting” two perfectly bonded layers with radial interfacial incompatibility. This setting allows a comparison between available, seemingly equivalent, interface conditions commonly used in the literature of layered media stability. We analytically determine the circumstances under which the interface conditions are equivalent or not, and numerically demonstrate significant differences between interface conditions with increasing level of layer incompatibility. Differences of more than tenfold in buckling and 30% in inflation instability critical loads are recorded using the different RICs. Contrasting instability characteristics are also revealed using the different RICs in the presence of incompatibility: inflation instability can occur before pressure maximum, and spontaneous instability may be excluded for thin shells. These findings are relevant to the growing body of stability studies of layered and residually stressed tissues. The impact of interface conditions on critical thresholds is significant in studies that use concepts of instability to draw conclusions about the normal development and the pathologies of tissues like arteries, esophagus, airways, and the brain.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleInstability of Incompatible Bilayered Soft Tissues and the Role of Interface Conditions
    typeJournal Paper
    journal volume141
    journal issue10
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4043560
    journal fristpage101012
    journal lastpage101012-12
    treeJournal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian