YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Model-Form and Parameter Uncertainty Quantification in Structural Vibration Simulation Using Fractional Derivatives

    Source: Journal of Computational and Nonlinear Dynamics:;2019:;volume( 014 ):;issue: 005::page 51006
    Author:
    Zhang, Baoqiang
    ,
    Guo, Qintao
    ,
    Wang, Yan
    ,
    Zhan, Ming
    DOI: 10.1115/1.4042689
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Extensive research has been devoted to engineering analysis in the presence of only parameter uncertainty. However, in modeling process, model-form uncertainty arises inevitably due to the lack of information and knowledge, as well as assumptions and simplifications made in the models. It is undoubted that model-form uncertainty cannot be ignored. To better quantify model-form uncertainty in vibration systems with multiple degrees-of-freedom, in this paper, fractional derivatives as model-form hyperparameters are introduced. A new general model calibration approach is proposed to separate and reduce model-form and parameter uncertainty based on multiple fractional frequency response functions (FFRFs). The new calibration method is verified through a simulated system with two degrees-of-freedom. The studies demonstrate that the new model-form and parameter uncertainty quantification method is robust.
    • Download: (2.560Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Model-Form and Parameter Uncertainty Quantification in Structural Vibration Simulation Using Fractional Derivatives

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257854
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorZhang, Baoqiang
    contributor authorGuo, Qintao
    contributor authorWang, Yan
    contributor authorZhan, Ming
    date accessioned2019-09-18T09:00:43Z
    date available2019-09-18T09:00:43Z
    date copyright3/14/2019 12:00:00 AM
    date issued2019
    identifier issn1555-1415
    identifier othercnd_014_05_051006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257854
    description abstractExtensive research has been devoted to engineering analysis in the presence of only parameter uncertainty. However, in modeling process, model-form uncertainty arises inevitably due to the lack of information and knowledge, as well as assumptions and simplifications made in the models. It is undoubted that model-form uncertainty cannot be ignored. To better quantify model-form uncertainty in vibration systems with multiple degrees-of-freedom, in this paper, fractional derivatives as model-form hyperparameters are introduced. A new general model calibration approach is proposed to separate and reduce model-form and parameter uncertainty based on multiple fractional frequency response functions (FFRFs). The new calibration method is verified through a simulated system with two degrees-of-freedom. The studies demonstrate that the new model-form and parameter uncertainty quantification method is robust.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleModel-Form and Parameter Uncertainty Quantification in Structural Vibration Simulation Using Fractional Derivatives
    typeJournal Paper
    journal volume14
    journal issue5
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4042689
    journal fristpage51006
    journal lastpage051006-12
    treeJournal of Computational and Nonlinear Dynamics:;2019:;volume( 014 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian