YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Applied Mechanics Reviews
    • View Item
    •   YE&T Library
    • ASME
    • Applied Mechanics Reviews
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wave-Packet Models for Jet Dynamics and Sound Radiation

    Source: Applied Mechanics Reviews:;2019:;volume( 071 ):;issue: 002::page 20802
    Author:
    Cavalieri, André V. G.
    ,
    Jordan, Peter
    ,
    Lesshafft, Lutz
    DOI: 10.1115/1.4042736
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Organized structures in turbulent jets can be modeled as wavepackets. These are characterized by spatial amplification and decay, both of which are related to stability mechanisms, and they are coherent over several jet diameters, thereby constituting a noncompact acoustic source that produces a distinctive directivity in the acoustic field. In this review, we use simplified model problems to discuss the salient features of turbulent-jet wavepackets and their modeling frameworks. Two classes of model are considered. The first, that we refer to as kinematic, is based on Lighthill's acoustic analogy, and allows an evaluation of the radiation properties of sound-source functions postulated following observation of jets. The second, referred to as dynamic, is based on the linearized, inhomogeneous Ginzburg–Landau equation, which we use as a surrogate for the linearized, inhomogeneous Navier–Stokes system. Both models are elaborated in the framework of resolvent analysis, which allows the dynamics to be viewed in terms of an input–ouput system, the input being either sound-source or nonlinear forcing term, and the output, correspondingly, either farfield acoustic pressure fluctuations or nearfield flow fluctuations. Emphasis is placed on the extension of resolvent analysis to stochastic systems, which allows for the treatment of wavepacket jitter, a feature known to be relevant for subsonic jet noise. Despite the simplicity of the models, they are found to qualitatively reproduce many of the features of turbulent jets observed in experiment and simulation. Sample scripts are provided and allow calculation of most of the presented results.
    • Download: (9.037Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wave-Packet Models for Jet Dynamics and Sound Radiation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257830
    Collections
    • Applied Mechanics Reviews

    Show full item record

    contributor authorCavalieri, André V. G.
    contributor authorJordan, Peter
    contributor authorLesshafft, Lutz
    date accessioned2019-06-08T09:29:59Z
    date available2019-06-08T09:29:59Z
    date copyright3/13/2019 12:00:00 AM
    date issued2019
    identifier issn0003-6900
    identifier otheramr_071_02_020802.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257830
    description abstractOrganized structures in turbulent jets can be modeled as wavepackets. These are characterized by spatial amplification and decay, both of which are related to stability mechanisms, and they are coherent over several jet diameters, thereby constituting a noncompact acoustic source that produces a distinctive directivity in the acoustic field. In this review, we use simplified model problems to discuss the salient features of turbulent-jet wavepackets and their modeling frameworks. Two classes of model are considered. The first, that we refer to as kinematic, is based on Lighthill's acoustic analogy, and allows an evaluation of the radiation properties of sound-source functions postulated following observation of jets. The second, referred to as dynamic, is based on the linearized, inhomogeneous Ginzburg–Landau equation, which we use as a surrogate for the linearized, inhomogeneous Navier–Stokes system. Both models are elaborated in the framework of resolvent analysis, which allows the dynamics to be viewed in terms of an input–ouput system, the input being either sound-source or nonlinear forcing term, and the output, correspondingly, either farfield acoustic pressure fluctuations or nearfield flow fluctuations. Emphasis is placed on the extension of resolvent analysis to stochastic systems, which allows for the treatment of wavepacket jitter, a feature known to be relevant for subsonic jet noise. Despite the simplicity of the models, they are found to qualitatively reproduce many of the features of turbulent jets observed in experiment and simulation. Sample scripts are provided and allow calculation of most of the presented results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleWave-Packet Models for Jet Dynamics and Sound Radiation
    typeJournal Paper
    journal volume71
    journal issue2
    journal titleApplied Mechanics Reviews
    identifier doi10.1115/1.4042736
    journal fristpage20802
    journal lastpage020802-27
    treeApplied Mechanics Reviews:;2019:;volume( 071 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian