YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Compression Garments for Sensory Processing Disorder Treatment Using Integrated Active Materials

    Source: Journal of Medical Devices:;2019:;volume( 013 ):;issue: 002::page 21001
    Author:
    Duvall, Julia C.
    ,
    Schleif, Nicholas
    ,
    Dunne, Lucy E.
    ,
    Holschuh, Brad
    DOI: 10.1115/1.4042599
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Many medical conditions, including sensory processing disorder (SPD), employ compression therapy as a form of treatment. SPD patients often wear weighted or elastic vests to produce compression on the body, which have been shown to have a calming effect on the wearer. Recent advances in compression garment technology incorporate active materials to produce dynamic, low bulk compression garments that can be remotely controlled. In this study, an active compression vest using shape memory alloy (SMA) spring actuators was developed to produce up to 52.5 mmHg compression on a child's torso for SPD applications. The vest prototype incorporated 16 SMA spring actuators (1.25 mm diameter, spring index = 3) that constrict when heated, producing large forces and displacements that can be controlled via an applied current. When power was applied (up to 43.8 W), the prototype vest generated increasing magnitudes of pressure (up to 37.6 mmHg, spatially averaged across the front of the torso) on a representative child-sized form. The average pressure generated was measured up to 71.6% of the modeled pressure, and spatial pressure nonuniformities were observed that can be traced to specific garment architectural features. Although there is no consistent standard in magnitude or distribution of applied force in compression therapy garments, it is clear from comparative benchmarks that the compression produced by this garment exceeds the demands of the target application. This study demonstrates the viability of SMA-based compression garments as an enabling technology for enhancing SPD (and other compression-based) treatment.
    • Download: (1.982Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Compression Garments for Sensory Processing Disorder Treatment Using Integrated Active Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257631
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorDuvall, Julia C.
    contributor authorSchleif, Nicholas
    contributor authorDunne, Lucy E.
    contributor authorHolschuh, Brad
    date accessioned2019-06-08T09:28:54Z
    date available2019-06-08T09:28:54Z
    date copyright3/6/2019 12:00:00 AM
    date issued2019
    identifier issn1932-6181
    identifier othermed_013_02_021001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257631
    description abstractMany medical conditions, including sensory processing disorder (SPD), employ compression therapy as a form of treatment. SPD patients often wear weighted or elastic vests to produce compression on the body, which have been shown to have a calming effect on the wearer. Recent advances in compression garment technology incorporate active materials to produce dynamic, low bulk compression garments that can be remotely controlled. In this study, an active compression vest using shape memory alloy (SMA) spring actuators was developed to produce up to 52.5 mmHg compression on a child's torso for SPD applications. The vest prototype incorporated 16 SMA spring actuators (1.25 mm diameter, spring index = 3) that constrict when heated, producing large forces and displacements that can be controlled via an applied current. When power was applied (up to 43.8 W), the prototype vest generated increasing magnitudes of pressure (up to 37.6 mmHg, spatially averaged across the front of the torso) on a representative child-sized form. The average pressure generated was measured up to 71.6% of the modeled pressure, and spatial pressure nonuniformities were observed that can be traced to specific garment architectural features. Although there is no consistent standard in magnitude or distribution of applied force in compression therapy garments, it is clear from comparative benchmarks that the compression produced by this garment exceeds the demands of the target application. This study demonstrates the viability of SMA-based compression garments as an enabling technology for enhancing SPD (and other compression-based) treatment.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDynamic Compression Garments for Sensory Processing Disorder Treatment Using Integrated Active Materials
    typeJournal Paper
    journal volume13
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.4042599
    journal fristpage21001
    journal lastpage021001-9
    treeJournal of Medical Devices:;2019:;volume( 013 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian