YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Survey on the Computation of Quaternions From Rotation Matrices

    Source: Journal of Mechanisms and Robotics:;2019:;volume( 011 ):;issue: 002::page 21006
    Author:
    Sarabandi, Soheil
    ,
    Thomas, Federico
    DOI: 10.1115/1.4041889
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The parameterization of rotations is a central topic in many theoretical and applied fields such as rigid body mechanics, multibody dynamics, robotics, spacecraft attitude dynamics, navigation, three-dimensional image processing, and computer graphics. Nowadays, the main alternative to the use of rotation matrices, to represent rotations in ℝ3, is the use of Euler parameters arranged in quaternion form. Whereas the passage from a set of Euler parameters to the corresponding rotation matrix is unique and straightforward, the passage from a rotation matrix to its corresponding Euler parameters has been revealed to be somewhat tricky if numerical aspects are considered. Since the map from quaternions to 3 × 3 rotation matrices is a 2-to-1 covering map, this map cannot be smoothly inverted. As a consequence, it is erroneously assumed that all inversions should necessarily contain singularities that arise in the form of quotients where the divisor can be arbitrarily small. This misconception is herein clarified. This paper reviews the most representative methods available in the literature, including a comparative analysis of their computational costs and error performances. The presented analysis leads to the conclusion that Cayley's factorization, a little-known method used to compute the double quaternion representation of rotations in four dimensions from 4 × 4 rotation matrices, is the most robust method when particularized to three dimensions.
    • Download: (207.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Survey on the Computation of Quaternions From Rotation Matrices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257551
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorSarabandi, Soheil
    contributor authorThomas, Federico
    date accessioned2019-06-08T09:28:29Z
    date available2019-06-08T09:28:29Z
    date copyright3/1/2019 12:00:00 AM
    date issued2019
    identifier issn1942-4302
    identifier otherjmr_011_02_021006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257551
    description abstractThe parameterization of rotations is a central topic in many theoretical and applied fields such as rigid body mechanics, multibody dynamics, robotics, spacecraft attitude dynamics, navigation, three-dimensional image processing, and computer graphics. Nowadays, the main alternative to the use of rotation matrices, to represent rotations in ℝ3, is the use of Euler parameters arranged in quaternion form. Whereas the passage from a set of Euler parameters to the corresponding rotation matrix is unique and straightforward, the passage from a rotation matrix to its corresponding Euler parameters has been revealed to be somewhat tricky if numerical aspects are considered. Since the map from quaternions to 3 × 3 rotation matrices is a 2-to-1 covering map, this map cannot be smoothly inverted. As a consequence, it is erroneously assumed that all inversions should necessarily contain singularities that arise in the form of quotients where the divisor can be arbitrarily small. This misconception is herein clarified. This paper reviews the most representative methods available in the literature, including a comparative analysis of their computational costs and error performances. The presented analysis leads to the conclusion that Cayley's factorization, a little-known method used to compute the double quaternion representation of rotations in four dimensions from 4 × 4 rotation matrices, is the most robust method when particularized to three dimensions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Survey on the Computation of Quaternions From Rotation Matrices
    typeJournal Paper
    journal volume11
    journal issue2
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4041889
    journal fristpage21006
    journal lastpage021006-9
    treeJournal of Mechanisms and Robotics:;2019:;volume( 011 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian