YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Assessment of a Numerical Weather Prediction Model for Solar Photovoltaic Power Forecasts in Cities

    Source: Journal of Energy Resources Technology:;2019:;volume( 141 ):;issue: 006::page 61203
    Author:
    Gamarro, Harold
    ,
    Gonzalez, Jorge E.
    ,
    Ortiz, Luis E.
    DOI: 10.1115/1.4042972
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Recent developments in the weather research and forecasting (WRF) model have made it possible to accurately estimate incident solar radiation. This study couples the WRF-solar modifications with a multilayer urban canopy and building energy model (BEM) to create a unified WRF forecasting system called urban WRF–solar (uWRF-solar). This paper tests the integrated approach in the New York City (NYC) metro region as a sample case. Hourly forecasts are validated against ground station data collected at ten different sites in and around the city. Validation is carried out independently for clear, cloudy, and overcast sky conditions. Results indicate that the uWRF-solar model can forecast solar irradiance considerably well for the global horizontal irradiance (GHI) with an R2 value of 0.93 for clear sky conditions, 0.61 for cloudy sky conditions, and finally, 0.39 for overcast conditions. Results are further used to directly forecast solar power production in the region of interest, where evaluations of generation potential are done at the city scale. Outputs show a gradient of power generation produced by the potential available solar energy on the entire uWRF-solar grid. In total, the city has a city photovoltaic (PV) potential of 118 kWh/day/m2 and 3.65 MWh/month/m2.
    • Download: (2.775Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Assessment of a Numerical Weather Prediction Model for Solar Photovoltaic Power Forecasts in Cities

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257512
    Collections
    • Journal of Electrochemical Energy Conversion and Storage

    Show full item record

    contributor authorGamarro, Harold
    contributor authorGonzalez, Jorge E.
    contributor authorOrtiz, Luis E.
    date accessioned2019-06-08T09:28:18Z
    date available2019-06-08T09:28:18Z
    date copyright3/29/2019 12:00:00 AM
    date issued2019
    identifier issn0195-0738
    identifier otherjert_141_06_061203.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257512
    description abstractRecent developments in the weather research and forecasting (WRF) model have made it possible to accurately estimate incident solar radiation. This study couples the WRF-solar modifications with a multilayer urban canopy and building energy model (BEM) to create a unified WRF forecasting system called urban WRF–solar (uWRF-solar). This paper tests the integrated approach in the New York City (NYC) metro region as a sample case. Hourly forecasts are validated against ground station data collected at ten different sites in and around the city. Validation is carried out independently for clear, cloudy, and overcast sky conditions. Results indicate that the uWRF-solar model can forecast solar irradiance considerably well for the global horizontal irradiance (GHI) with an R2 value of 0.93 for clear sky conditions, 0.61 for cloudy sky conditions, and finally, 0.39 for overcast conditions. Results are further used to directly forecast solar power production in the region of interest, where evaluations of generation potential are done at the city scale. Outputs show a gradient of power generation produced by the potential available solar energy on the entire uWRF-solar grid. In total, the city has a city photovoltaic (PV) potential of 118 kWh/day/m2 and 3.65 MWh/month/m2.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Assessment of a Numerical Weather Prediction Model for Solar Photovoltaic Power Forecasts in Cities
    typeJournal Paper
    journal volume141
    journal issue6
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4042972
    journal fristpage61203
    journal lastpage061203-7
    treeJournal of Energy Resources Technology:;2019:;volume( 141 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian