YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Uncertainty Quantification of Aerodynamic Icing Losses in Wind Turbine With Polynomial Chaos Expansion

    Source: Journal of Energy Resources Technology:;2019:;volume( 141 ):;issue: 005::page 51210
    Author:
    Tabatabaei, Narges
    ,
    Raisee, Mehrdad
    ,
    Cervantes, Michel J.
    DOI: 10.1115/1.4042732
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Icing of wind turbine blades poses a challenge for the wind power industry in cold climate wind farms. It can lead to production losses of more than 10% of the annual energy production. Knowledge of how the production is affected by icing is of importance. Complicating this reality is the fact that even a small amount of uncertainty in the shape of the accreted ice may result in a large amount of uncertainty in the aerodynamic performance metrics. This paper presents a numerical approach using the technique of polynomial chaos expansion (PCE) to quantify icing uncertainty faster than traditional methods. Time-dependent bi-dimensional Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS-CFD) simulations are considered to evaluate the aerodynamic characteristics at the chosen sample points. The boundary conditions are based on three-dimensional simulations of the rotor. This approach is applied to the NREL 5 MW reference wind turbine allowing to estimate the power loss range due to the leading-edge glaze ice, considering a radial section near the tip. The probability distribution function of the power loss is also assessed. The results of the section are nondimensionalized and assumed valid for the other radial sections. A correlation is found allowing to model the load loss with respect to the glaze ice horn height, as well as the corresponding probability distribution. Considering an equal chance for any of the ice profiles, load loss is estimated to be lower than 6.5% for the entire blade in half of the icing cases, while it could be roughly 4–6 times in the most severe icings.
    • Download: (3.431Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Uncertainty Quantification of Aerodynamic Icing Losses in Wind Turbine With Polynomial Chaos Expansion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257507
    Collections
    • Journal of Electrochemical Energy Conversion and Storage

    Show full item record

    contributor authorTabatabaei, Narges
    contributor authorRaisee, Mehrdad
    contributor authorCervantes, Michel J.
    date accessioned2019-06-08T09:28:16Z
    date available2019-06-08T09:28:16Z
    date copyright4/1/2019 12:00:00 AM
    date issued2019
    identifier issn0195-0738
    identifier otherjert_141_05_051210.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257507
    description abstractIcing of wind turbine blades poses a challenge for the wind power industry in cold climate wind farms. It can lead to production losses of more than 10% of the annual energy production. Knowledge of how the production is affected by icing is of importance. Complicating this reality is the fact that even a small amount of uncertainty in the shape of the accreted ice may result in a large amount of uncertainty in the aerodynamic performance metrics. This paper presents a numerical approach using the technique of polynomial chaos expansion (PCE) to quantify icing uncertainty faster than traditional methods. Time-dependent bi-dimensional Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS-CFD) simulations are considered to evaluate the aerodynamic characteristics at the chosen sample points. The boundary conditions are based on three-dimensional simulations of the rotor. This approach is applied to the NREL 5 MW reference wind turbine allowing to estimate the power loss range due to the leading-edge glaze ice, considering a radial section near the tip. The probability distribution function of the power loss is also assessed. The results of the section are nondimensionalized and assumed valid for the other radial sections. A correlation is found allowing to model the load loss with respect to the glaze ice horn height, as well as the corresponding probability distribution. Considering an equal chance for any of the ice profiles, load loss is estimated to be lower than 6.5% for the entire blade in half of the icing cases, while it could be roughly 4–6 times in the most severe icings.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUncertainty Quantification of Aerodynamic Icing Losses in Wind Turbine With Polynomial Chaos Expansion
    typeJournal Paper
    journal volume141
    journal issue5
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4042732
    journal fristpage51210
    journal lastpage051210-11
    treeJournal of Energy Resources Technology:;2019:;volume( 141 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian