YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Evaluation of an SOFC-GT Hybrid System With Ejectors for the Anode and Cathode Recirculations

    Source: Journal of Electrochemical Energy Conversion and Storage:;2019:;volume( 016 ):;issue: 004::page 41004
    Author:
    Chen, Jinwei
    ,
    Gao, Kuanying
    ,
    Liang, Maozong
    ,
    Zhang, Huisheng
    DOI: 10.1115/1.4042985
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The ejectors used for the fuel cell recirculation are more reliable and low cost in maintenance than high-temperature blowers. In this paper, an anode and cathode recirculation scheme, equipped with ejectors, was designed in a solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The ejector model, SOFC model, and other component models and the validation were conducted to investigate the performance of the hybrid system with anode and cathode ejectors. The geometric parameters of the ejectors were designed to perform the anode and cathode recirculation loops according to the design conditions of the hybrid system with a blower-based recirculation loop. The cathode ejector geometries are much larger than the anode ejector. In addition, the sensitivity analysis of the primary fluid for the standalone anode and cathode ejectors is investigated. The results show that the ejector can recirculate more secondary fluid by reducing the ejector outlet pressure. Then, the anode and cathode ejectors were integrated into the SOFC-GT hybrid system. A blower gets involved downstream, and the compressor is necessary to avoid high expensive cost of redesigning compressor. The off-design and dynamic performance were characterized after integrating the anode and cathode ejectors into the hybrid system. The dynamic and off-design performances show that the designed ejectors are effectively integrated into the anode and cathode recirculation loops to replace the blower-based recirculation loops. The safety range of relative fuel flow rate is 0.62–1.22 in the fixed rotational speed strategy, and it is 0.53–1.1 in the variable rotational speed strategy. The variable rotational speed strategy can ensure higher system efficiency, which is more than 61% at a part-load condition.
    • Download: (617.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Evaluation of an SOFC-GT Hybrid System With Ejectors for the Anode and Cathode Recirculations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257501
    Collections
    • Journal of Electrochemical Energy Conversion and Storage

    Show full item record

    contributor authorChen, Jinwei
    contributor authorGao, Kuanying
    contributor authorLiang, Maozong
    contributor authorZhang, Huisheng
    date accessioned2019-06-08T09:28:14Z
    date available2019-06-08T09:28:14Z
    date copyright3/25/2019 12:00:00 AM
    date issued2019
    identifier issn2381-6872
    identifier otherjeecs_16_4_041004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257501
    description abstractThe ejectors used for the fuel cell recirculation are more reliable and low cost in maintenance than high-temperature blowers. In this paper, an anode and cathode recirculation scheme, equipped with ejectors, was designed in a solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The ejector model, SOFC model, and other component models and the validation were conducted to investigate the performance of the hybrid system with anode and cathode ejectors. The geometric parameters of the ejectors were designed to perform the anode and cathode recirculation loops according to the design conditions of the hybrid system with a blower-based recirculation loop. The cathode ejector geometries are much larger than the anode ejector. In addition, the sensitivity analysis of the primary fluid for the standalone anode and cathode ejectors is investigated. The results show that the ejector can recirculate more secondary fluid by reducing the ejector outlet pressure. Then, the anode and cathode ejectors were integrated into the SOFC-GT hybrid system. A blower gets involved downstream, and the compressor is necessary to avoid high expensive cost of redesigning compressor. The off-design and dynamic performance were characterized after integrating the anode and cathode ejectors into the hybrid system. The dynamic and off-design performances show that the designed ejectors are effectively integrated into the anode and cathode recirculation loops to replace the blower-based recirculation loops. The safety range of relative fuel flow rate is 0.62–1.22 in the fixed rotational speed strategy, and it is 0.53–1.1 in the variable rotational speed strategy. The variable rotational speed strategy can ensure higher system efficiency, which is more than 61% at a part-load condition.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePerformance Evaluation of an SOFC-GT Hybrid System With Ejectors for the Anode and Cathode Recirculations
    typeJournal Paper
    journal volume16
    journal issue4
    journal titleJournal of Electrochemical Energy Conversion and Storage
    identifier doi10.1115/1.4042985
    journal fristpage41004
    journal lastpage041004-11
    treeJournal of Electrochemical Energy Conversion and Storage:;2019:;volume( 016 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian