contributor author | Nejad, Amir R. | |
contributor author | Bachynski, Erin E. | |
contributor author | Moan, Torgeir | |
date accessioned | 2019-03-17T11:22:39Z | |
date available | 2019-03-17T11:22:39Z | |
date copyright | 1/17/2019 12:00:00 AM | |
date issued | 2019 | |
identifier issn | 0892-7219 | |
identifier other | omae_141_03_031901.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4256931 | |
description abstract | Common industrial practice for designing floating wind turbines is to set an operational limit for the tower-top axial acceleration, normally in the range of 0.2–0.3 g, which is typically understood to be related to the safety of turbine components. This paper investigates the rationality of the tower-top acceleration limit by evaluating the correlation between acceleration and drivetrain responses. A 5-MW reference drivetrain is selected and modeled on a spar-type floating wind turbine in 320 m water depth. A range of environmental conditions are selected based on the long-term distribution of wind speed, significant wave height, and peak period from hindcast data for the Northern North Sea. For each condition, global analysis using an aero-hydro-servo-elastic tool is carried out for six one-hour realizations. The global analysis results provide useful information on their own—regarding the correlation between environmental condition and tower top acceleration, and the correlation between tower top acceleration and other responses of interest—which are used as input in a decoupled analysis approach. The load effects and motions from the global analysis are applied on a detailed drivetrain model in a multibody system (MBS) analysis tool. The local responses on bearings are then obtained from MBS analysis and postprocessed for the correlation study. Although the maximum acceleration provides a good indication of the wave-induced loads, it is not seen to be a good predictor for significant fatigue damage on the main bearings in this case. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Effect of Axial Acceleration on Drivetrain Responses in a Spar-Type Floating Wind Turbine | |
type | Journal Paper | |
journal volume | 141 | |
journal issue | 3 | |
journal title | Journal of Offshore Mechanics and Arctic Engineering | |
identifier doi | 10.1115/1.4041996 | |
journal fristpage | 31901 | |
journal lastpage | 031901-7 | |
tree | Journal of Offshore Mechanics and Arctic Engineering:;2019:;volume( 141 ):;issue: 003 | |
contenttype | Fulltext | |