YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimization of Micropencil Grinding Tools Via Electrical Discharge Machining

    Source: Journal of Manufacturing Science and Engineering:;2019:;volume( 141 ):;issue: 003::page 31005
    Author:
    Arrabiyeh, Peter A.
    ,
    Dethloff, Maximilian
    ,
    Müller, Christopher
    ,
    Kirsch, Benjamin
    ,
    Aurich, Jan C.
    DOI: 10.1115/1.4042110
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Micropencil grinding tools (MPGTs) are micromachining tools that use superabrasives like diamond and cubic boron nitride (cBN) grits to manufacture complex microstructures in a broad range of hard and brittle materials. MPGTs suffer from a rather low tool life, when compared to other more established microprocessing methods. It was documented that when used on hardened steel workpieces, MPGTs suffer from a large amount of adhesions, mostly located at the pivot point of the tool. These adhesions lead to the clogging of the abrasive layer and ultimately in tool failure. Another problem this machining process suffers from is the formation of substructures (smaller channels inside the microchannels). The pivot is usually less prone to abrasive wear, has higher protrusion, and is therefore responsible for the deepest substructures. These substructures can easily take up half the depth of cut, obstructing the function of machined microchannels—it is one of the major flaws of this micromachining process. A micro-electrical discharge machining method (μEDM) can solve these issues by manufacturing a cavity at the pivot of these tools. A novel method that uses measurement probes to position the substrate above the μEDM electrode is implemented and a parameter study to determine the cavity manufacturing parameters is conducted for substrates with diameters < 40 μm. The goal is to demonstrate the first ever complete and reliable manufacturing process for MPGTs with a cavity and to demonstrate the advantages they provide in a machining process when compared to regular MPGTs.
    • Download: (4.552Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimization of Micropencil Grinding Tools Via Electrical Discharge Machining

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256924
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorArrabiyeh, Peter A.
    contributor authorDethloff, Maximilian
    contributor authorMüller, Christopher
    contributor authorKirsch, Benjamin
    contributor authorAurich, Jan C.
    date accessioned2019-03-17T11:22:29Z
    date available2019-03-17T11:22:29Z
    date copyright1/17/2019 12:00:00 AM
    date issued2019
    identifier issn1087-1357
    identifier othermanu_141_03_031005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256924
    description abstractMicropencil grinding tools (MPGTs) are micromachining tools that use superabrasives like diamond and cubic boron nitride (cBN) grits to manufacture complex microstructures in a broad range of hard and brittle materials. MPGTs suffer from a rather low tool life, when compared to other more established microprocessing methods. It was documented that when used on hardened steel workpieces, MPGTs suffer from a large amount of adhesions, mostly located at the pivot point of the tool. These adhesions lead to the clogging of the abrasive layer and ultimately in tool failure. Another problem this machining process suffers from is the formation of substructures (smaller channels inside the microchannels). The pivot is usually less prone to abrasive wear, has higher protrusion, and is therefore responsible for the deepest substructures. These substructures can easily take up half the depth of cut, obstructing the function of machined microchannels—it is one of the major flaws of this micromachining process. A micro-electrical discharge machining method (μEDM) can solve these issues by manufacturing a cavity at the pivot of these tools. A novel method that uses measurement probes to position the substrate above the μEDM electrode is implemented and a parameter study to determine the cavity manufacturing parameters is conducted for substrates with diameters < 40 μm. The goal is to demonstrate the first ever complete and reliable manufacturing process for MPGTs with a cavity and to demonstrate the advantages they provide in a machining process when compared to regular MPGTs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimization of Micropencil Grinding Tools Via Electrical Discharge Machining
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4042110
    journal fristpage31005
    journal lastpage031005-9
    treeJournal of Manufacturing Science and Engineering:;2019:;volume( 141 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian