YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanics of Three-Dimensional Printed Lattices for Biomedical Devices

    Source: Journal of Mechanical Design:;2019:;volume( 141 ):;issue: 003::page 31703
    Author:
    Egan, Paul F.
    ,
    Bauer, Isabella
    ,
    Shea, Kristina
    ,
    Ferguson, Stephen J.
    DOI: 10.1115/1.4042213
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Advances in three-dimensional (3D) printing are enabling the design and fabrication of tailored lattices with high mechanical efficiency. Here, we focus on conducting experiments to mechanically characterize lattice structures to measure properties that inform an integrated design, manufacturing, and experiment framework. Structures are configured as beam-based lattices intended for use in novel spinal cage devices for bone fusion, fabricated with polyjet printing. Polymer lattices with 50% and 70% porosity were fabricated with beam diameters of 0.4–1.0mm, with measured effective elastic moduli from 28MPa to 213MPa. Effective elastic moduli decreased with higher lattice porosity, increased with larger beam diameters, and were highest for lattices compressed perpendicular to their original build direction. Cages were designed with 50% and 70% lattice porosities and included central voids for increased nutrient transport, reinforced shells for increased stiffness, or both. Cage stiffnesses ranged from 4.1kN/mm to 9.6kN/mm with yielding after 0.36–0.48mm displacement, thus suggesting their suitability for typical spinal loads of 1.65kN. The 50% porous cage with reinforced shell and central void was particularly favorable, with an 8.4kN/mm stiffness enabling it to potentially function as a stand-alone spinal cage while retaining a large open void for enhanced nutrient transport. Findings support the future development of fully integrated design approaches for 3D printed structures, demonstrated here with a focus on experimentally investigating lattice structures for developing novel biomedical devices.
    • Download: (5.146Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanics of Three-Dimensional Printed Lattices for Biomedical Devices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256886
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorEgan, Paul F.
    contributor authorBauer, Isabella
    contributor authorShea, Kristina
    contributor authorFerguson, Stephen J.
    date accessioned2019-03-17T11:19:00Z
    date available2019-03-17T11:19:00Z
    date copyright1/14/2019 12:00:00 AM
    date issued2019
    identifier issn1050-0472
    identifier othermd_141_03_031703.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256886
    description abstractAdvances in three-dimensional (3D) printing are enabling the design and fabrication of tailored lattices with high mechanical efficiency. Here, we focus on conducting experiments to mechanically characterize lattice structures to measure properties that inform an integrated design, manufacturing, and experiment framework. Structures are configured as beam-based lattices intended for use in novel spinal cage devices for bone fusion, fabricated with polyjet printing. Polymer lattices with 50% and 70% porosity were fabricated with beam diameters of 0.4–1.0mm, with measured effective elastic moduli from 28MPa to 213MPa. Effective elastic moduli decreased with higher lattice porosity, increased with larger beam diameters, and were highest for lattices compressed perpendicular to their original build direction. Cages were designed with 50% and 70% lattice porosities and included central voids for increased nutrient transport, reinforced shells for increased stiffness, or both. Cage stiffnesses ranged from 4.1kN/mm to 9.6kN/mm with yielding after 0.36–0.48mm displacement, thus suggesting their suitability for typical spinal loads of 1.65kN. The 50% porous cage with reinforced shell and central void was particularly favorable, with an 8.4kN/mm stiffness enabling it to potentially function as a stand-alone spinal cage while retaining a large open void for enhanced nutrient transport. Findings support the future development of fully integrated design approaches for 3D printed structures, demonstrated here with a focus on experimentally investigating lattice structures for developing novel biomedical devices.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMechanics of Three-Dimensional Printed Lattices for Biomedical Devices
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4042213
    journal fristpage31703
    journal lastpage031703-12
    treeJournal of Mechanical Design:;2019:;volume( 141 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian