YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measurement of Transitional Surface Roughness Effects on Flat-Plate Boundary Layer Transition

    Source: Journal of Fluids Engineering:;2019:;volume( 141 ):;issue: 007::page 74501
    Author:
    Jeong, Heechan
    ,
    Lee, Seung Woo
    ,
    Song, Seung Jin
    DOI: 10.1115/1.4042258
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An experimental study has been conducted to investigate the effects of transitionally rough surface on the flat-plate boundary layer transition. Transitional boundary layers with three different flat plates (ks+ = 0.07 ∼ 0.19, 2.71 ∼ 7.05, and 13.65 ∼ 41.09) have been measured with a single-sensor hot-wire probe. All of the measurements have been conducted under zero pressure gradient (ZPG) at the fixed Reynolds number (ReL) and freestream turbulence intensity (Tu) of 3.05 × 106 and 0.2%. Transitionally, rough surface does not affect the sigmoidal distribution of turbulence intermittency model; but induces earlier transition onset and shortens the transition length. For all surfaces, streamwise turbulence intensity profiles with similar values of turbulence intermittency are similar for the transition length less than 60%. Therefore, mean velocity profiles with the similar values of turbulence intermittency are similar regardless of surface conditions. However, downstream of 60% of the transition length, mean velocity defect increases as the surface roughness increases. Enhanced diffusion of turbulent kinetic energy from the near wall (y/δ < 0.1) to the outer part (y/δ ≈ 0.4) of the boundary layer due to the surface roughness is responsible for the increased momentum deficit.
    • Download: (1.679Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measurement of Transitional Surface Roughness Effects on Flat-Plate Boundary Layer Transition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256879
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorJeong, Heechan
    contributor authorLee, Seung Woo
    contributor authorSong, Seung Jin
    date accessioned2019-03-17T11:17:55Z
    date available2019-03-17T11:17:55Z
    date copyright1/14/2019 12:00:00 AM
    date issued2019
    identifier issn0098-2202
    identifier otherfe_141_07_074501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256879
    description abstractAn experimental study has been conducted to investigate the effects of transitionally rough surface on the flat-plate boundary layer transition. Transitional boundary layers with three different flat plates (ks+ = 0.07 ∼ 0.19, 2.71 ∼ 7.05, and 13.65 ∼ 41.09) have been measured with a single-sensor hot-wire probe. All of the measurements have been conducted under zero pressure gradient (ZPG) at the fixed Reynolds number (ReL) and freestream turbulence intensity (Tu) of 3.05 × 106 and 0.2%. Transitionally, rough surface does not affect the sigmoidal distribution of turbulence intermittency model; but induces earlier transition onset and shortens the transition length. For all surfaces, streamwise turbulence intensity profiles with similar values of turbulence intermittency are similar for the transition length less than 60%. Therefore, mean velocity profiles with the similar values of turbulence intermittency are similar regardless of surface conditions. However, downstream of 60% of the transition length, mean velocity defect increases as the surface roughness increases. Enhanced diffusion of turbulent kinetic energy from the near wall (y/δ < 0.1) to the outer part (y/δ ≈ 0.4) of the boundary layer due to the surface roughness is responsible for the increased momentum deficit.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMeasurement of Transitional Surface Roughness Effects on Flat-Plate Boundary Layer Transition
    typeJournal Paper
    journal volume141
    journal issue7
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4042258
    journal fristpage74501
    journal lastpage074501-7
    treeJournal of Fluids Engineering:;2019:;volume( 141 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian