YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Design Method to Improve End-of-Use Product Value Recovery for Circular Economy

    Source: Journal of Mechanical Design:;2019:;volume( 141 ):;issue: 004::page 44502
    Author:
    Cong, Liang
    ,
    Zhao, Fu
    ,
    Sutherland, John W.
    DOI: 10.1115/1.4041574
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Circular economy (CE) is being increasingly accepted as a promising sustainable business model, supporting waste minimization through product life cycles. The product end-of-use (EOU) stage is the key to circulate materials and components into a new life cycle, rather than direct disposal. The economic viability of recycling EOU products is significantly affected by designers' decisions and largely determined during product design. Low economic return of EOU value recovery is a major barrier to overcome. To address this issue, a design method to facilitate EOU product value recovery is proposed. First, product EOU scenarios are determined by optimization of EOU component flows. The EOU scenario depicts which modules (groups of components) will be allocated for reuse, recycling, or disposal, the order of joint detachment (the joints for modules connection), and recovery profit. Second, in the given study, bottlenecks, improvement opportunities, and design suggestions will be identified and provided following the EOU scenario analysis. Pareto analysis is used for ranking joints, according to their detachment cost and for indicating which joints are the most suitable for replacement. An analytic hierarchy process (AHP) is employed to select the best joint candidate with trade-off among criteria from the perspective of disassembly. In addition, disposal and recycling modules are checked to eliminate hazardous material and increase material compatibility. A value-based recycling indicator is developed to measure recyclability of the modules and evaluate design suggestions for material selection. Finally, based on heuristics, the most valuable and reusable modules will be selected for reconfiguration so that they can be easily accessed and disassembled. A hard disk drive is used as a case study to illustrate the method.
    • Download: (1.651Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Design Method to Improve End-of-Use Product Value Recovery for Circular Economy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256859
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorCong, Liang
    contributor authorZhao, Fu
    contributor authorSutherland, John W.
    date accessioned2019-03-17T11:15:36Z
    date available2019-03-17T11:15:36Z
    date copyright1/11/2019 12:00:00 AM
    date issued2019
    identifier issn1050-0472
    identifier othermd_141_04_044502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256859
    description abstractCircular economy (CE) is being increasingly accepted as a promising sustainable business model, supporting waste minimization through product life cycles. The product end-of-use (EOU) stage is the key to circulate materials and components into a new life cycle, rather than direct disposal. The economic viability of recycling EOU products is significantly affected by designers' decisions and largely determined during product design. Low economic return of EOU value recovery is a major barrier to overcome. To address this issue, a design method to facilitate EOU product value recovery is proposed. First, product EOU scenarios are determined by optimization of EOU component flows. The EOU scenario depicts which modules (groups of components) will be allocated for reuse, recycling, or disposal, the order of joint detachment (the joints for modules connection), and recovery profit. Second, in the given study, bottlenecks, improvement opportunities, and design suggestions will be identified and provided following the EOU scenario analysis. Pareto analysis is used for ranking joints, according to their detachment cost and for indicating which joints are the most suitable for replacement. An analytic hierarchy process (AHP) is employed to select the best joint candidate with trade-off among criteria from the perspective of disassembly. In addition, disposal and recycling modules are checked to eliminate hazardous material and increase material compatibility. A value-based recycling indicator is developed to measure recyclability of the modules and evaluate design suggestions for material selection. Finally, based on heuristics, the most valuable and reusable modules will be selected for reconfiguration so that they can be easily accessed and disassembled. A hard disk drive is used as a case study to illustrate the method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Design Method to Improve End-of-Use Product Value Recovery for Circular Economy
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4041574
    journal fristpage44502
    journal lastpage044502-10
    treeJournal of Mechanical Design:;2019:;volume( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian