YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vibration-Enhanced Droplet Motion Modes: Simulations of Rocking, Ratcheting, Ratcheting With Breakup, and Ejection

    Source: Journal of Fluids Engineering:;2019:;volume( 141 ):;issue: 007::page 71105
    Author:
    Huber, Ryan A.
    ,
    Campbell, Matthew
    ,
    Doughramaji, Nicole
    ,
    Derby, Melanie M.
    DOI: 10.1115/1.4042037
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Power plant water usage is a coupling of the energy–water nexus; this research investigates water droplet motion, with implications for water recovery in cooling towers. Simulations of a 2.6 mm-diameter droplet motion on a hydrophobic, vertical surface were conducted in xflow using the lattice Boltzmann method (LBM). Results were compared to two experimental cases; in the first case, experimental and simulated droplets experienced 30 Hz vibrations (i.e., ±0.1 mm x-direction amplitude, ±0.2 mm y-direction amplitude) and the droplet ratcheted down the surface. In the second case, 100 Hz vibrations (i.e., ±0.8 mm x-direction amplitude, ±0.2 mm y-direction amplitude) caused droplet ejection. Simulations were then conducted for a wide range of frequencies (i.e., 10–100 Hz) and amplitudes (i.e., ±0.018–50 mm), resulting in maximum accelerations of 0.197–1970 m/s2. Under low maximum accelerations (e.g., <7 m/s2), droplets rocked upward and downward in rocking mode, but did not overcome the contact angle hysteresis and, therefore, did not move. As acceleration increased, droplets overcame the contact angle hysteresis and entered ratcheting mode. For vibrations that prompted droplet motion, droplet velocities varied between 10–1000 mm/s. At capillary numbers above approximately 0.0044 and Weber numbers above 3.6, liquid breakup was observed in ratcheting droplets (e.g., the formation of smaller child droplets from the parent droplet). It was noted that both x- and y-direction vibrations were required for droplet ejection.
    • Download: (3.972Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vibration-Enhanced Droplet Motion Modes: Simulations of Rocking, Ratcheting, Ratcheting With Breakup, and Ejection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256762
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorHuber, Ryan A.
    contributor authorCampbell, Matthew
    contributor authorDoughramaji, Nicole
    contributor authorDerby, Melanie M.
    date accessioned2019-03-17T11:10:07Z
    date available2019-03-17T11:10:07Z
    date copyright1/7/2019 12:00:00 AM
    date issued2019
    identifier issn0098-2202
    identifier otherfe_141_07_071105.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256762
    description abstractPower plant water usage is a coupling of the energy–water nexus; this research investigates water droplet motion, with implications for water recovery in cooling towers. Simulations of a 2.6 mm-diameter droplet motion on a hydrophobic, vertical surface were conducted in xflow using the lattice Boltzmann method (LBM). Results were compared to two experimental cases; in the first case, experimental and simulated droplets experienced 30 Hz vibrations (i.e., ±0.1 mm x-direction amplitude, ±0.2 mm y-direction amplitude) and the droplet ratcheted down the surface. In the second case, 100 Hz vibrations (i.e., ±0.8 mm x-direction amplitude, ±0.2 mm y-direction amplitude) caused droplet ejection. Simulations were then conducted for a wide range of frequencies (i.e., 10–100 Hz) and amplitudes (i.e., ±0.018–50 mm), resulting in maximum accelerations of 0.197–1970 m/s2. Under low maximum accelerations (e.g., <7 m/s2), droplets rocked upward and downward in rocking mode, but did not overcome the contact angle hysteresis and, therefore, did not move. As acceleration increased, droplets overcame the contact angle hysteresis and entered ratcheting mode. For vibrations that prompted droplet motion, droplet velocities varied between 10–1000 mm/s. At capillary numbers above approximately 0.0044 and Weber numbers above 3.6, liquid breakup was observed in ratcheting droplets (e.g., the formation of smaller child droplets from the parent droplet). It was noted that both x- and y-direction vibrations were required for droplet ejection.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleVibration-Enhanced Droplet Motion Modes: Simulations of Rocking, Ratcheting, Ratcheting With Breakup, and Ejection
    typeJournal Paper
    journal volume141
    journal issue7
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4042037
    journal fristpage71105
    journal lastpage071105-13
    treeJournal of Fluids Engineering:;2019:;volume( 141 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian