YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elastic Fiber Fragmentation Increases Transmural Hydraulic Conductance and Solute Transport in Mouse Arteries

    Source: Journal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 002::page 21013
    Author:
    Cocciolone, Austin J.
    ,
    Johnson, Elizabeth O.
    ,
    Shao, Jin-Yu
    ,
    Wagenseil, Jessica E.
    DOI: 10.1115/1.4042173
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Transmural advective transport of solute and fluid was investigated in mouse carotid arteries with either a genetic knockout of fibulin-5 (Fbln5−/−) or treatment with elastase to determine the influence of a disrupted elastic fiber matrix on wall transport properties. Fibulin-5 is an important director of elastic fiber assembly. Arteries from Fbln5−/− mice have a loose, noncontinuous elastic fiber network and were hypothesized to have reduced resistance to advective transport. Experiments were carried out ex vivo at physiological pressure and axial stretch. Hydraulic conductance (LP) was measured to be 4.99 × 10−6±8.94 × 10−7, 3.18−5±1.13 × 10−5 (p < 0.01), and 3.57 × 10−5 ±1.77 × 10−5 (p < 0.01) mm·s−1·mmHg−1 for wild-type, Fbln5−/−, and elastase-treated carotids, respectively. Solute fluxes of 4, 70, and 150 kDa fluorescein isothiocyanate (FITC)-dextran were statistically increased in Fbln5−/− compared to wild-type by a factor of 4, 22, and 3, respectively. Similarly, elastase-treated carotids demonstrated a 27- and 13-fold increase in net solute flux of 70 and 150 kDa FITC-dextran, respectively, compared to untreated carotids, and 4 kDa FITC-dextran was unchanged between these groups. Solute uptake of 4 and 70 kDa FITC-dextran within Fbln5−/− carotids was decreased compared to wild-type for all investigated time points. These changes in transport properties of elastic fiber compromised arteries have important implications for the kinetics of biomolecules and pharmaceuticals in arterial tissue following elastic fiber degradation due to aging or vascular disease.
    • Download: (2.235Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elastic Fiber Fragmentation Increases Transmural Hydraulic Conductance and Solute Transport in Mouse Arteries

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256643
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorCocciolone, Austin J.
    contributor authorJohnson, Elizabeth O.
    contributor authorShao, Jin-Yu
    contributor authorWagenseil, Jessica E.
    date accessioned2019-03-17T11:05:27Z
    date available2019-03-17T11:05:27Z
    date copyright12/19/2018 12:00:00 AM
    date issued2019
    identifier issn0148-0731
    identifier otherbio_141_02_021013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256643
    description abstractTransmural advective transport of solute and fluid was investigated in mouse carotid arteries with either a genetic knockout of fibulin-5 (Fbln5−/−) or treatment with elastase to determine the influence of a disrupted elastic fiber matrix on wall transport properties. Fibulin-5 is an important director of elastic fiber assembly. Arteries from Fbln5−/− mice have a loose, noncontinuous elastic fiber network and were hypothesized to have reduced resistance to advective transport. Experiments were carried out ex vivo at physiological pressure and axial stretch. Hydraulic conductance (LP) was measured to be 4.99 × 10−6±8.94 × 10−7, 3.18−5±1.13 × 10−5 (p < 0.01), and 3.57 × 10−5 ±1.77 × 10−5 (p < 0.01) mm·s−1·mmHg−1 for wild-type, Fbln5−/−, and elastase-treated carotids, respectively. Solute fluxes of 4, 70, and 150 kDa fluorescein isothiocyanate (FITC)-dextran were statistically increased in Fbln5−/− compared to wild-type by a factor of 4, 22, and 3, respectively. Similarly, elastase-treated carotids demonstrated a 27- and 13-fold increase in net solute flux of 70 and 150 kDa FITC-dextran, respectively, compared to untreated carotids, and 4 kDa FITC-dextran was unchanged between these groups. Solute uptake of 4 and 70 kDa FITC-dextran within Fbln5−/− carotids was decreased compared to wild-type for all investigated time points. These changes in transport properties of elastic fiber compromised arteries have important implications for the kinetics of biomolecules and pharmaceuticals in arterial tissue following elastic fiber degradation due to aging or vascular disease.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleElastic Fiber Fragmentation Increases Transmural Hydraulic Conductance and Solute Transport in Mouse Arteries
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4042173
    journal fristpage21013
    journal lastpage021013-10
    treeJournal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian