YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Calcium Quantifications on Stent Expansions

    Source: Journal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 002::page 21010
    Author:
    Dong, Pengfei
    ,
    Bezerra, Hiram G.
    ,
    Wilson, David L.
    ,
    Gu, Linxia
    DOI: 10.1115/1.4042013
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Severely calcified plaque is of great concern when planning and implementing a stenting intervention. In this work, computational models were developed to investigate the influence of calcium characteristics on stenting outcomes. The commonly used clinical measurements of calcium (i.e., the arc angle, maximum thickness, length, and volume) were varied to estimate stenting outcomes in terms of lumen gain, stent underexpansion, strut malapposition, and stress or strain distributions of the stenotic lesion. Results have shown that stenting outcomes were most sensitive to the arc angle of the calcium. A thick calcium with a large arc angle resulted in poor stenting outcomes, such as severe stent underexpansion, D-shaped lumen, increased strut malapposition, and large stresses or strains in the plaque. This was attributed to the circumferential stretch of the tissue. Specifically, the noncalcium component was stretched significantly more than the calcium. The circumferential stretch ratios of calcium and noncalcium component were approximately 1.44 and 2.35, respectively, regardless of calcium characteristics. In addition, the peak stress or strain within the artery and noncalcium component of the plaque occurred at the area adjacent to calcium edges (i.e., the interface between the calcium and the noncalcium component) coincident with the location of peak malapposition. It is worth noting that calcium played a protective role for the artery underneath, which was at the expense of the overstretch and stress concentrations in the other portion of the artery. These detailed mechanistic quantifications could be used to provide a fundamental understanding of the impact of calcium quantifications on stent expansions, as well as to exploit their potential for a better preclinical strategy.
    • Download: (2.400Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Calcium Quantifications on Stent Expansions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256591
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorDong, Pengfei
    contributor authorBezerra, Hiram G.
    contributor authorWilson, David L.
    contributor authorGu, Linxia
    date accessioned2019-03-17T11:03:22Z
    date available2019-03-17T11:03:22Z
    date copyright12/12/2018 12:00:00 AM
    date issued2019
    identifier issn0148-0731
    identifier otherbio_141_02_021010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256591
    description abstractSeverely calcified plaque is of great concern when planning and implementing a stenting intervention. In this work, computational models were developed to investigate the influence of calcium characteristics on stenting outcomes. The commonly used clinical measurements of calcium (i.e., the arc angle, maximum thickness, length, and volume) were varied to estimate stenting outcomes in terms of lumen gain, stent underexpansion, strut malapposition, and stress or strain distributions of the stenotic lesion. Results have shown that stenting outcomes were most sensitive to the arc angle of the calcium. A thick calcium with a large arc angle resulted in poor stenting outcomes, such as severe stent underexpansion, D-shaped lumen, increased strut malapposition, and large stresses or strains in the plaque. This was attributed to the circumferential stretch of the tissue. Specifically, the noncalcium component was stretched significantly more than the calcium. The circumferential stretch ratios of calcium and noncalcium component were approximately 1.44 and 2.35, respectively, regardless of calcium characteristics. In addition, the peak stress or strain within the artery and noncalcium component of the plaque occurred at the area adjacent to calcium edges (i.e., the interface between the calcium and the noncalcium component) coincident with the location of peak malapposition. It is worth noting that calcium played a protective role for the artery underneath, which was at the expense of the overstretch and stress concentrations in the other portion of the artery. These detailed mechanistic quantifications could be used to provide a fundamental understanding of the impact of calcium quantifications on stent expansions, as well as to exploit their potential for a better preclinical strategy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImpact of Calcium Quantifications on Stent Expansions
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4042013
    journal fristpage21010
    journal lastpage021010-8
    treeJournal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian