YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Theoretical and Finite Element Analysis of Residual Stress Field for Different Geometrical Features After Abrasive Waterjet Peening

    Source: Journal of Pressure Vessel Technology:;2019:;volume( 141 ):;issue: 001::page 11401
    Author:
    Zhang, Meng
    ,
    He, Zhanshu
    ,
    Zhang, Yuanxi
    ,
    Wang, Xingdong
    ,
    Zhao, Shusen
    ,
    Fu, Ting
    ,
    Chen, Lei
    DOI: 10.1115/1.4041940
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Abrasive waterjet (AWJ) peening can be used for metal surface strengthening by introducing near-surface plastic strain and compressive residual stress. The present studies seldom focus on residual stress by AWJ peening of targets with different geometrical features. In fact, those targets usually exist on some machine parts including gear roots, shaft shoulders, and stress concentration areas. According to Hertz theory of contact and Miao's theoretical model for predicting residual stress of flat surface, this paper developed a theoretical model for investigating residual stress of targets with different geometrical features including concave arc surface, concave sphere surface, convex arc surface, and sphere surface. AWJ peening of targets with different geometrical features and different radii of Gaussian curved surface was simulated by abaqus. Theoretical results were consistent with numerical simulation results and published experimental results (H. Y. Miao, S. Larose, et al., 2010, “An analytical approach to relate shot peening parameters to Almen intensity,” Surf. Coat. Technol., 205, pp. 2055–2066; Cao et al., 1995, “Correlation of Almen arc height with residual stresses in shot peening process”, Mater. Sci. Technol. 11, pp. 967–973.), which will be helpful for predicting residual stress of gear roots, shaft shoulders, and stress concentration areas after AWJ peening. The research results showed that under the same peening parameters, σmax, σtop, dmax, and dbottom in concave surface (including concave arc surface and concave sphere surface) were the maximum; σmax, σtop, dmax, and dbottom in convex surface (including convex arc surface and sphere surface) were the minimum; for concave surface, σtop, σmax, dbottom, and dmax decreased, respectively, with target radius; for convex surface, σtop, σmax, dbottom, and dmax increased, respectively, with target radius.
    • Download: (4.736Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Theoretical and Finite Element Analysis of Residual Stress Field for Different Geometrical Features After Abrasive Waterjet Peening

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256571
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorZhang, Meng
    contributor authorHe, Zhanshu
    contributor authorZhang, Yuanxi
    contributor authorWang, Xingdong
    contributor authorZhao, Shusen
    contributor authorFu, Ting
    contributor authorChen, Lei
    date accessioned2019-03-17T11:02:39Z
    date available2019-03-17T11:02:39Z
    date copyright12/7/2018 12:00:00 AM
    date issued2019
    identifier issn0094-9930
    identifier otherpvt_141_01_011401.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256571
    description abstractAbrasive waterjet (AWJ) peening can be used for metal surface strengthening by introducing near-surface plastic strain and compressive residual stress. The present studies seldom focus on residual stress by AWJ peening of targets with different geometrical features. In fact, those targets usually exist on some machine parts including gear roots, shaft shoulders, and stress concentration areas. According to Hertz theory of contact and Miao's theoretical model for predicting residual stress of flat surface, this paper developed a theoretical model for investigating residual stress of targets with different geometrical features including concave arc surface, concave sphere surface, convex arc surface, and sphere surface. AWJ peening of targets with different geometrical features and different radii of Gaussian curved surface was simulated by abaqus. Theoretical results were consistent with numerical simulation results and published experimental results (H. Y. Miao, S. Larose, et al., 2010, “An analytical approach to relate shot peening parameters to Almen intensity,” Surf. Coat. Technol., 205, pp. 2055–2066; Cao et al., 1995, “Correlation of Almen arc height with residual stresses in shot peening process”, Mater. Sci. Technol. 11, pp. 967–973.), which will be helpful for predicting residual stress of gear roots, shaft shoulders, and stress concentration areas after AWJ peening. The research results showed that under the same peening parameters, σmax, σtop, dmax, and dbottom in concave surface (including concave arc surface and concave sphere surface) were the maximum; σmax, σtop, dmax, and dbottom in convex surface (including convex arc surface and sphere surface) were the minimum; for concave surface, σtop, σmax, dbottom, and dmax decreased, respectively, with target radius; for convex surface, σtop, σmax, dbottom, and dmax increased, respectively, with target radius.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTheoretical and Finite Element Analysis of Residual Stress Field for Different Geometrical Features After Abrasive Waterjet Peening
    typeJournal Paper
    journal volume141
    journal issue1
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4041940
    journal fristpage11401
    journal lastpage011401-12
    treeJournal of Pressure Vessel Technology:;2019:;volume( 141 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian