YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Stress Analysis on Barrel Considering the Radial Effect of Propellant Gas Flow

    Source: Journal of Pressure Vessel Technology:;2019:;volume( 141 ):;issue: 001::page 11202
    Author:
    Yu, Qingbo
    ,
    Yang, Guolai
    DOI: 10.1115/1.4041974
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The stress response of an artillery barrel when fired is principally due to loading from gas pressure and contact force with the projectile. This paper reports a research project in which a dynamic model of a barrel and a projectile was established in order to investigate the stress response of an artillery barrel. Calculations of propellant gas pressure, in part determined by the position of the moving projectile, were carried out using user-defined subroutines developed in the abaqus/explicit software. Numerical simulations of the dynamic loading process of the barrel were carried out to examine the radial effects of gas pressures. Using this methodology, the evolution of barrel stress distributions was simulated, providing a visualized representation of the barrel's dynamic response. The calculated dynamic stress due to projectile contact alone can reach a peak value of 181 MPa, reflecting the significant effect of contact force on the barrel's dynamic response. Following this, the effect of propellant combustion on the dynamic response was explored, and the results obtained showed that higher initial temperatures produced more pronounced dynamic responses. Moreover, significant differences in stress distributions computed for the barrel revealed deficiencies in the static strength theory for evaluating the operating conditions, due in part to the omission of contact force and other dynamic effects. This paper proposes an alternative investigative approach for evaluating the dynamic stress response of barrels during the initial phases of the ballistics process, and provides information that should lead to updates and improvements of barrel strength theory, ultimately leading to better predictions of firing reliability and operator safety.
    • Download: (2.713Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Stress Analysis on Barrel Considering the Radial Effect of Propellant Gas Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256569
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorYu, Qingbo
    contributor authorYang, Guolai
    date accessioned2019-03-17T11:02:33Z
    date available2019-03-17T11:02:33Z
    date copyright12/7/2018 12:00:00 AM
    date issued2019
    identifier issn0094-9930
    identifier otherpvt_141_01_011202.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256569
    description abstractThe stress response of an artillery barrel when fired is principally due to loading from gas pressure and contact force with the projectile. This paper reports a research project in which a dynamic model of a barrel and a projectile was established in order to investigate the stress response of an artillery barrel. Calculations of propellant gas pressure, in part determined by the position of the moving projectile, were carried out using user-defined subroutines developed in the abaqus/explicit software. Numerical simulations of the dynamic loading process of the barrel were carried out to examine the radial effects of gas pressures. Using this methodology, the evolution of barrel stress distributions was simulated, providing a visualized representation of the barrel's dynamic response. The calculated dynamic stress due to projectile contact alone can reach a peak value of 181 MPa, reflecting the significant effect of contact force on the barrel's dynamic response. Following this, the effect of propellant combustion on the dynamic response was explored, and the results obtained showed that higher initial temperatures produced more pronounced dynamic responses. Moreover, significant differences in stress distributions computed for the barrel revealed deficiencies in the static strength theory for evaluating the operating conditions, due in part to the omission of contact force and other dynamic effects. This paper proposes an alternative investigative approach for evaluating the dynamic stress response of barrels during the initial phases of the ballistics process, and provides information that should lead to updates and improvements of barrel strength theory, ultimately leading to better predictions of firing reliability and operator safety.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDynamic Stress Analysis on Barrel Considering the Radial Effect of Propellant Gas Flow
    typeJournal Paper
    journal volume141
    journal issue1
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4041974
    journal fristpage11202
    journal lastpage011202-12
    treeJournal of Pressure Vessel Technology:;2019:;volume( 141 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian