YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Charge and Mechanical Loading on Antibody Diffusion Through the Articular Surface of Cartilage

    Source: Journal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 001::page 14502
    Author:
    DiDomenico, Chris D.
    ,
    Bonassar, Lawrence J.
    DOI: 10.1115/1.4041768
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Molecular transport of osteoarthritis (OA) therapeutics within articular cartilage is influenced by many factors, such as solute charge, that have yet to be fully understood. This study characterizes how solute charge influences local diffusion and convective transport of antibodies within the heterogeneous cartilage matrix. Three fluorescently tagged solutes of varying isoelectric point (pI) (4.7–5.9) were tested in either cyclic or passive cartilage loading conditions. In each case, local diffusivities were calculated based on local fluorescence in the cartilage sample, as observed by confocal microscopy. In agreement with past research, local solute diffusivities within the heterogeneous cartilage matrix were highest around 200–275 μm from the articular surface, but 3–4 times lower at the articular surface and in the deeper zones of the tissue. Transport of all 150 kDa solutes was significantly increased by the application of mechanical loading at 1 Hz, but local transport enhancement was not significantly affected by changes in solute isoelectric point. More positively charged solutes (higher pI) had significantly higher local diffusivities 200–275 μm from the tissue surface, but no other differences were observed. This implies that there are certain regions of cartilage that are more sensitive to changes in solute charge than others, which could be useful for future development of OA therapeutics.
    • Download: (1.222Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Charge and Mechanical Loading on Antibody Diffusion Through the Articular Surface of Cartilage

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256393
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorDiDomenico, Chris D.
    contributor authorBonassar, Lawrence J.
    date accessioned2019-03-17T10:55:25Z
    date available2019-03-17T10:55:25Z
    date copyright11/19/2018 12:00:00 AM
    date issued2019
    identifier issn0148-0731
    identifier otherbio_141_01_014502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256393
    description abstractMolecular transport of osteoarthritis (OA) therapeutics within articular cartilage is influenced by many factors, such as solute charge, that have yet to be fully understood. This study characterizes how solute charge influences local diffusion and convective transport of antibodies within the heterogeneous cartilage matrix. Three fluorescently tagged solutes of varying isoelectric point (pI) (4.7–5.9) were tested in either cyclic or passive cartilage loading conditions. In each case, local diffusivities were calculated based on local fluorescence in the cartilage sample, as observed by confocal microscopy. In agreement with past research, local solute diffusivities within the heterogeneous cartilage matrix were highest around 200–275 μm from the articular surface, but 3–4 times lower at the articular surface and in the deeper zones of the tissue. Transport of all 150 kDa solutes was significantly increased by the application of mechanical loading at 1 Hz, but local transport enhancement was not significantly affected by changes in solute isoelectric point. More positively charged solutes (higher pI) had significantly higher local diffusivities 200–275 μm from the tissue surface, but no other differences were observed. This implies that there are certain regions of cartilage that are more sensitive to changes in solute charge than others, which could be useful for future development of OA therapeutics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effect of Charge and Mechanical Loading on Antibody Diffusion Through the Articular Surface of Cartilage
    typeJournal Paper
    journal volume141
    journal issue1
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4041768
    journal fristpage14502
    journal lastpage014502-5
    treeJournal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian