YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Adiabatic Effectiveness on High-Pressure Turbine Nozzle Guide Vanes Under Realistic Swirling Conditions

    Source: Journal of Turbomachinery:;2019:;volume( 141 ):;issue: 001::page 11009
    Author:
    Bacci, Tommaso
    ,
    Becchi, Riccardo
    ,
    Picchi, Alessio
    ,
    Facchini, Bruno
    DOI: 10.1115/1.4041559
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In modern lean-burn aero-engine combustors, highly swirling flow structures are adopted to control the fuel-air mixing and to provide the correct flame stabilization mechanisms. Aggressive swirl fields and high turbulence intensities are hence expected in the combustor-turbine interface. Moreover, to maximize the engine cycle efficiency, an accurate design of the high-pressure nozzle cooling system must be pursued: in a film-cooled nozzle, the air taken from last compressor stages is ejected through discrete holes drilled on vane surfaces to provide a cold layer between hot gases and turbine components. In this context, the interactions between the swirling combustor outflow and the vane film cooling flows play a major role in the definition of a well-performing cooling scheme, demanding for experimental campaigns at representative flow conditions. An annular three-sector combustor simulator with fully cooled high-pressure vanes has been designed and installed at THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion-cooled liners, and six film-cooled high-pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central airfoil aligned with the central swirler. In this experimental work, adiabatic film effectiveness measurements have been carried out in the central sector vanes, in order to characterize the film-cooling performance under swirling inflow conditions. The pressure-sensitive paint (PSP) technique, based on heat and mass transfer analogy, has been exploited to catch highly detailed 2D distributions. Carbon dioxide has been used as coolant in order to reach a coolant-to-mainstream density ratio of 1.5. Turbulence and five-hole probe measurements at inlet/outlet of the cascade have been carried out as well, in order to highlight the characteristics of the flow field passing through the cascade and to provide precise boundary conditions. Results have shown a relevant effect of the swirling mainflow on the film cooling behavior. Differences have been found between the central airfoil and the adjacent ones, both in terms of leading edge stagnation point position and of pressure and suction side film coverage characteristics.
    • Download: (6.149Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Adiabatic Effectiveness on High-Pressure Turbine Nozzle Guide Vanes Under Realistic Swirling Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256311
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorBacci, Tommaso
    contributor authorBecchi, Riccardo
    contributor authorPicchi, Alessio
    contributor authorFacchini, Bruno
    date accessioned2019-03-17T10:44:57Z
    date available2019-03-17T10:44:57Z
    date copyright11/5/2018 12:00:00 AM
    date issued2019
    identifier issn0889-504X
    identifier otherturbo_141_01_011009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256311
    description abstractIn modern lean-burn aero-engine combustors, highly swirling flow structures are adopted to control the fuel-air mixing and to provide the correct flame stabilization mechanisms. Aggressive swirl fields and high turbulence intensities are hence expected in the combustor-turbine interface. Moreover, to maximize the engine cycle efficiency, an accurate design of the high-pressure nozzle cooling system must be pursued: in a film-cooled nozzle, the air taken from last compressor stages is ejected through discrete holes drilled on vane surfaces to provide a cold layer between hot gases and turbine components. In this context, the interactions between the swirling combustor outflow and the vane film cooling flows play a major role in the definition of a well-performing cooling scheme, demanding for experimental campaigns at representative flow conditions. An annular three-sector combustor simulator with fully cooled high-pressure vanes has been designed and installed at THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion-cooled liners, and six film-cooled high-pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central airfoil aligned with the central swirler. In this experimental work, adiabatic film effectiveness measurements have been carried out in the central sector vanes, in order to characterize the film-cooling performance under swirling inflow conditions. The pressure-sensitive paint (PSP) technique, based on heat and mass transfer analogy, has been exploited to catch highly detailed 2D distributions. Carbon dioxide has been used as coolant in order to reach a coolant-to-mainstream density ratio of 1.5. Turbulence and five-hole probe measurements at inlet/outlet of the cascade have been carried out as well, in order to highlight the characteristics of the flow field passing through the cascade and to provide precise boundary conditions. Results have shown a relevant effect of the swirling mainflow on the film cooling behavior. Differences have been found between the central airfoil and the adjacent ones, both in terms of leading edge stagnation point position and of pressure and suction side film coverage characteristics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAdiabatic Effectiveness on High-Pressure Turbine Nozzle Guide Vanes Under Realistic Swirling Conditions
    typeJournal Paper
    journal volume141
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4041559
    journal fristpage11009
    journal lastpage011009-13
    treeJournal of Turbomachinery:;2019:;volume( 141 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian