YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Tribo-Dynamics of Nanocomposite Grease Lubricated Point Contact Under Elastohydrodynamics Lubrication Regime

    Source: Journal of Tribology:;2019:;volume( 141 ):;issue: 003::page 31501
    Author:
    Singh, Jayant
    ,
    Kumar, Deepak
    ,
    Tandon, Naresh
    DOI: 10.1115/1.4041590
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Friction is usually induced when the contacts are in relative motion, leading to mechanical vibration and consequently heat generation. The reduction of these undesirable parameters is possible by the application of greases, which intends to increase the service life of the bearings. The present work incorporates the frictional and vibration behaviors of concentrated point contact lubricated with bare and nanocomposite greases. The nanocomposite greases were formulated by dispersing different categories of nano-additives like reduced graphene oxide (rGO), calcium carbonate (CaCO3), and alumina (α-Al2O3) in bare grease (BG). The formulated nanocomposite greases are tested for film formation, frictional and vibrational response under a limited supply of greases. The use of transparent glass disk better analyses the profile of film thickness to understand the lubrication mechanism of the point contact. The microstructure of nano-additives and the formulated nanocomposite greases were characterized using high-resolution transmission electron microscopy (HRTEM). The presence of different functional groups in nano-additives and the formulated nanocomposite greases were characterized using Raman spectroscopy. The tribological contact operates under 3% and 30% slide-roll-ratio (SRR) for varying rolling speed (0.001–1 m/s) at a load of 30 N (Hertzian pressure, pH = 0.9 GPa). Film thickness, friction and vibration behavior were recorded to focus the tribo-performance, degree of starvation and dynamics of the tribological contact with slip varying from 3% to 30% SRR. The vibration level was refined to 32% with the addition of rGO nanosheets in BG. The incompatibility of α-Al2O3 with the grease structure results in disruption of tribo-dynamics behavior of the point contact.
    • Download: (3.776Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Tribo-Dynamics of Nanocomposite Grease Lubricated Point Contact Under Elastohydrodynamics Lubrication Regime

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256286
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorSingh, Jayant
    contributor authorKumar, Deepak
    contributor authorTandon, Naresh
    date accessioned2019-03-17T10:44:06Z
    date available2019-03-17T10:44:06Z
    date copyright11/1/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4787
    identifier othertrib_141_03_031501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256286
    description abstractFriction is usually induced when the contacts are in relative motion, leading to mechanical vibration and consequently heat generation. The reduction of these undesirable parameters is possible by the application of greases, which intends to increase the service life of the bearings. The present work incorporates the frictional and vibration behaviors of concentrated point contact lubricated with bare and nanocomposite greases. The nanocomposite greases were formulated by dispersing different categories of nano-additives like reduced graphene oxide (rGO), calcium carbonate (CaCO3), and alumina (α-Al2O3) in bare grease (BG). The formulated nanocomposite greases are tested for film formation, frictional and vibrational response under a limited supply of greases. The use of transparent glass disk better analyses the profile of film thickness to understand the lubrication mechanism of the point contact. The microstructure of nano-additives and the formulated nanocomposite greases were characterized using high-resolution transmission electron microscopy (HRTEM). The presence of different functional groups in nano-additives and the formulated nanocomposite greases were characterized using Raman spectroscopy. The tribological contact operates under 3% and 30% slide-roll-ratio (SRR) for varying rolling speed (0.001–1 m/s) at a load of 30 N (Hertzian pressure, pH = 0.9 GPa). Film thickness, friction and vibration behavior were recorded to focus the tribo-performance, degree of starvation and dynamics of the tribological contact with slip varying from 3% to 30% SRR. The vibration level was refined to 32% with the addition of rGO nanosheets in BG. The incompatibility of α-Al2O3 with the grease structure results in disruption of tribo-dynamics behavior of the point contact.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTribo-Dynamics of Nanocomposite Grease Lubricated Point Contact Under Elastohydrodynamics Lubrication Regime
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Tribology
    identifier doi10.1115/1.4041590
    journal fristpage31501
    journal lastpage031501-11
    treeJournal of Tribology:;2019:;volume( 141 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian