Show simple item record

contributor authorShibata, Takanori
contributor authorFukushima, Hisataka
contributor authorSegewa, Kiyoshi
date accessioned2019-03-17T10:42:38Z
date available2019-03-17T10:42:38Z
date copyright11/1/2018 12:00:00 AM
date issued2019
identifier issn0742-4795
identifier othergtp_141_04_041003.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256277
description abstractIn high and intermediate pressure (HIP) steam turbines with shrouded blades, it is well known that shroud leakage losses contribute significantly to overall losses. Shroud leakage flow with a large tangential velocity creates a significant aerodynamic loss due to mixing with the mainstream flow. In order to reduce this mixing loss, two distinct ideas for rotor shroud exit cavity geometries were investigated using computational fluid dynamics (CFD) analyses and experimental tests. One idea was an axial fin placed from the shroud downstream casing to reduce the axial cavity gap, and the other was a swirl breaker placed in the rotor shroud exit cavity to reduce the tangential velocity of the leakage flow. In addition to the conventional cavity geometry, three types of shroud exit cavity geometries were designed, manufactured, and tested using a 1.5-stage air model turbine with medium aspect ratio blading. Test results showed that the axial fin and the swirl breaker raised turbine stage efficiency by 0.2% and 0.7%, respectively. The proposed swirl breaker was judged to be an effective way to achieve highly efficient steam turbines because it not only reduces the mixing losses but also improves the incidence angle distribution onto the downstream blade row. This study is presented in two papers. The basic design concept and typical performance of the proposed swirl breaker are presented in this part I, and the effect of axial distance between a swirl breaker and rotor shroud on efficiency improvement is discussed in part II [8].
publisherThe American Society of Mechanical Engineers (ASME)
titleImprovement of Steam Turbine Stage Efficiency by Controlling Rotor Shroud Leakage Flows—Part I: Design Concept and Typical Performance of a Swirl Breaker
typeJournal Paper
journal volume141
journal issue4
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4041650
journal fristpage41003
journal lastpage041003-9
treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record