YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Theoretical Analysis and Design of a Variable Delivery External Gear Pump for Low and Medium Pressure Applications

    Source: Journal of Mechanical Design:;2019:;volume( 141 ):;issue: 001::page 13401
    Author:
    Tankasala, Srinath
    ,
    Vacca, Andrea
    DOI: 10.1115/1.4041351
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper describes a unique design concept that is capable of electronically controlling the flow delivered by an external gear pump (EGP). The principle used for varying the flow relies on the variable timing concept which has been previously demonstrated by the author's research team for EGP's operating at high pressures (HPs) (p > 100 bar). This principle permits to vary the flow within a certain range, without introducing additional sources of power loss. In this paper, the above concept has been applied to formulate a design for a variable delivery EGP for low pressure (LP) applications (p < 30 bar), suitable for direct electric actuation. Specific design principles for the gear and the flow variation mechanisms are introduced to limit the force required by the electric actuation, and for maximizing the flow variation range. Also, the low target pressure allows the variable timing principle to be realized with an asymmetric solution, with only one variable timing element present at one side of the gears. A detailed analysis concerning the relationship between the electrically commanded position of the flow varying element and the theoretical flow delivered by the pump is also presented. This analysis is used to formulate analytical expressions for the instantaneous flow rate and the flow nonuniformity of the pump. The paper details the design principle of the proposed variable flow pump and describes the multi-objective optimization approach used for sizing the gears and flow variation mechanism. The paper also discusses the experimental activity performed on a prototype of the proposed unit, able to achieve a flow variation of 31%.
    • Download: (2.383Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Theoretical Analysis and Design of a Variable Delivery External Gear Pump for Low and Medium Pressure Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256103
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorTankasala, Srinath
    contributor authorVacca, Andrea
    date accessioned2019-03-17T10:23:03Z
    date available2019-03-17T10:23:03Z
    date copyright10/10/2018 12:00:00 AM
    date issued2019
    identifier issn1050-0472
    identifier othermd_141_01_013401.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256103
    description abstractThis paper describes a unique design concept that is capable of electronically controlling the flow delivered by an external gear pump (EGP). The principle used for varying the flow relies on the variable timing concept which has been previously demonstrated by the author's research team for EGP's operating at high pressures (HPs) (p > 100 bar). This principle permits to vary the flow within a certain range, without introducing additional sources of power loss. In this paper, the above concept has been applied to formulate a design for a variable delivery EGP for low pressure (LP) applications (p < 30 bar), suitable for direct electric actuation. Specific design principles for the gear and the flow variation mechanisms are introduced to limit the force required by the electric actuation, and for maximizing the flow variation range. Also, the low target pressure allows the variable timing principle to be realized with an asymmetric solution, with only one variable timing element present at one side of the gears. A detailed analysis concerning the relationship between the electrically commanded position of the flow varying element and the theoretical flow delivered by the pump is also presented. This analysis is used to formulate analytical expressions for the instantaneous flow rate and the flow nonuniformity of the pump. The paper details the design principle of the proposed variable flow pump and describes the multi-objective optimization approach used for sizing the gears and flow variation mechanism. The paper also discusses the experimental activity performed on a prototype of the proposed unit, able to achieve a flow variation of 31%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTheoretical Analysis and Design of a Variable Delivery External Gear Pump for Low and Medium Pressure Applications
    typeJournal Paper
    journal volume141
    journal issue1
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4041351
    journal fristpage13401
    journal lastpage013401-11
    treeJournal of Mechanical Design:;2019:;volume( 141 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian