YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation of Natural Convection Heat Transfer From a Stack of Horizontal Cylinders

    Source: Journal of Heat Transfer:;2019:;volume( 141 ):;issue: 001::page 12501
    Author:
    Rath, Subhasisa
    ,
    Dash, Sukanta Kumar
    DOI: 10.1115/1.4040954
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Natural convection heat transfer from horizontal solid cylinders has been studied numerically by varying the Rayleigh number in the range of (104≤Ra≤108) and (1010≤Ra≤1013) for both laminar and turbulent flows, respectively. The computations were carried out for three different geometries of three, six, and ten cylinders in a stack arranged in a triangular manner having same characteristic length scale. The present numerical investigation on natural convention is able to capture a very interesting flow pattern and temperature field over the stack of horizontal cylinders which has never been reported in the literature so far. Visualization of plume structure over the horizontal cylinders has also been obtained pictorially in the present work. From the numerical results, it has been observed that the total heat transfer is marginally higher for three-cylinder stack in the laminar range. In contrast, for turbulent flow, starting from Ra = 1010, heat transfer for six-cylinder case is higher but when Ra exceeds 5 × 1011, heat transfer for ten cylinders stack is marginally higher. The average surface Nusselt number is higher for the stack of three cylinders compared to six- and ten-cylinder cases for all range of Ra in both laminar and turbulent regimes. A correlation for the average Nusselt number has also been developed as a function of Rayleigh number which may be useful for researchers and industrial purposes.
    • Download: (5.182Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation of Natural Convection Heat Transfer From a Stack of Horizontal Cylinders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256078
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorRath, Subhasisa
    contributor authorDash, Sukanta Kumar
    date accessioned2019-03-17T10:19:54Z
    date available2019-03-17T10:19:54Z
    date copyright10/8/2018 12:00:00 AM
    date issued2019
    identifier issn0022-1481
    identifier otherht_141_01_012501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256078
    description abstractNatural convection heat transfer from horizontal solid cylinders has been studied numerically by varying the Rayleigh number in the range of (104≤Ra≤108) and (1010≤Ra≤1013) for both laminar and turbulent flows, respectively. The computations were carried out for three different geometries of three, six, and ten cylinders in a stack arranged in a triangular manner having same characteristic length scale. The present numerical investigation on natural convention is able to capture a very interesting flow pattern and temperature field over the stack of horizontal cylinders which has never been reported in the literature so far. Visualization of plume structure over the horizontal cylinders has also been obtained pictorially in the present work. From the numerical results, it has been observed that the total heat transfer is marginally higher for three-cylinder stack in the laminar range. In contrast, for turbulent flow, starting from Ra = 1010, heat transfer for six-cylinder case is higher but when Ra exceeds 5 × 1011, heat transfer for ten cylinders stack is marginally higher. The average surface Nusselt number is higher for the stack of three cylinders compared to six- and ten-cylinder cases for all range of Ra in both laminar and turbulent regimes. A correlation for the average Nusselt number has also been developed as a function of Rayleigh number which may be useful for researchers and industrial purposes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation of Natural Convection Heat Transfer From a Stack of Horizontal Cylinders
    typeJournal Paper
    journal volume141
    journal issue1
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4040954
    journal fristpage12501
    journal lastpage012501-10
    treeJournal of Heat Transfer:;2019:;volume( 141 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian