Show simple item record

contributor authorKennedy, Ian
contributor authorChen, Zhihang
contributor authorCeen, Bob
contributor authorJones, Simon
contributor authorCopeland, Colin D.
date accessioned2019-03-17T10:16:54Z
date available2019-03-17T10:16:54Z
date copyright10/4/2018 12:00:00 AM
date issued2019
identifier issn0742-4795
identifier othergtp_141_03_032301.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256044
description abstractExhaust gases from an internal combustion engine (ICE) contain approximately 30% of the total energy released from combustion of the fuel. In order to improve fuel economy and reduce emissions, there are a number of technologies available to recover some of the otherwise wasted energy. The inverted Brayton cycle (IBC) is one such technology. The purpose of this study is to conduct a parametric experimental investigation of the IBC. The hot air from a turbocharger test facility is used. The system is sized to operate using the exhaust gases produced by a 2 l turbocharged engine at motorway cruise conditions. A number of parameters are investigated that impact the performance of the system such as turbine inlet temperature, system pressure drop, and compressor inlet temperature. The results confirm that the output power is strongly affected by the turbine inlet temperature and system pressure drop. The study also highlights the packaging and performance advantages of using an additively manufactured heat exchanger to reject the excess heat. Due to rotordynamic issues, the speed of the system was limited to 80,000 rpm rather than the target 120,000 rpm. However, the results show that the system can generate a specific work of up to 17 kJ/kg at 80,000 rpm. At full speed, it is estimated that the system can develop approximately 47 kJ/kg, which represents a thermal efficiency of approximately 5%.
publisherThe American Society of Mechanical Engineers (ASME)
titleExperimental Investigation of an Inverted Brayton Cycle for Exhaust Gas Energy Recovery
typeJournal Paper
journal volume141
journal issue3
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4041109
journal fristpage32301
journal lastpage032301-11
treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record