YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Novel Electromagnetic Fixture for Incremental Sheet Metal Forming

    Source: Journal of Manufacturing Science and Engineering:;2019:;volume( 141 ):;issue: 003::page 35001
    Author:
    Nirala, Harish K.
    ,
    Agrawal, Anupam
    DOI: 10.1115/1.4042109
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Single-point incremental sheet forming (SPISF) is a promising die-less forming technique. It has a variety of applications in many industries, viz., automobile, aerospace, and bone transplants. In SPISF, a sheet of metal is deformed by using numerically controlled single-point, hemispherical end-shaped forming tool, which incrementally deforms the sheet with highly localized plastic deformation. SPISF is a flexible yet relatively slow process when compared with conventional forming techniques like deep drawing and spinning. Since the beginning of die-less forming technology, researchers are recommending it for small batch production system or for customized fabrication. Being a slow process, it still has not achieved wide industrial acceptability. Among several key parameters dictating the process speed, the sheet clamping mechanism is one of the significant parameters of SPISF. Clamping mechanism plays a vital role in its manufacturing lead time. However, research efforts in this direction have been largely neglected. In this investigation, to improve the process speed, a novel electromagnetic clamping mechanism for SPISF is proposed. Detailed numerical and experimental investigations have been carried out to set up its applicability for the SPISF process. From the available literature, it has been found that this type of clamping mechanism in SPISF has not been studied or investigated. The proposed electromagnetic clamping makes the process of sheet clamping faster and convenient, and provides one-click clamping solution. This concept can take the process of incremental sheet forming toward better industrial acceptability. Furthermore, SPISF of symmetric and asymmetric components is conducted to test the feasibility of the concept.
    • Download: (7.072Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Novel Electromagnetic Fixture for Incremental Sheet Metal Forming

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255857
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorNirala, Harish K.
    contributor authorAgrawal, Anupam
    date accessioned2019-03-17T10:00:57Z
    date available2019-03-17T10:00:57Z
    date copyright2/15/2019 12:00:00 AM
    date issued2019
    identifier issn1087-1357
    identifier othermanu_141_03_035001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255857
    description abstractSingle-point incremental sheet forming (SPISF) is a promising die-less forming technique. It has a variety of applications in many industries, viz., automobile, aerospace, and bone transplants. In SPISF, a sheet of metal is deformed by using numerically controlled single-point, hemispherical end-shaped forming tool, which incrementally deforms the sheet with highly localized plastic deformation. SPISF is a flexible yet relatively slow process when compared with conventional forming techniques like deep drawing and spinning. Since the beginning of die-less forming technology, researchers are recommending it for small batch production system or for customized fabrication. Being a slow process, it still has not achieved wide industrial acceptability. Among several key parameters dictating the process speed, the sheet clamping mechanism is one of the significant parameters of SPISF. Clamping mechanism plays a vital role in its manufacturing lead time. However, research efforts in this direction have been largely neglected. In this investigation, to improve the process speed, a novel electromagnetic clamping mechanism for SPISF is proposed. Detailed numerical and experimental investigations have been carried out to set up its applicability for the SPISF process. From the available literature, it has been found that this type of clamping mechanism in SPISF has not been studied or investigated. The proposed electromagnetic clamping makes the process of sheet clamping faster and convenient, and provides one-click clamping solution. This concept can take the process of incremental sheet forming toward better industrial acceptability. Furthermore, SPISF of symmetric and asymmetric components is conducted to test the feasibility of the concept.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Novel Electromagnetic Fixture for Incremental Sheet Metal Forming
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4042109
    journal fristpage35001
    journal lastpage035001-10
    treeJournal of Manufacturing Science and Engineering:;2019:;volume( 141 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian