YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Nonuniform Flexibility on Hydrodynamic Performance of Pitching Propulsors

    Source: Journal of Fluids Engineering:;2019:;volume( 141 ):;issue: 004::page 41108
    Author:
    Zeyghami, Samane
    ,
    Moored, Keith W.
    DOI: 10.1115/1.4041976
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Many aquatic animals propel themselves efficiently through the water by oscillating flexible fins. These fins are, however, not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here, we develop a simple model of these functionally graded materials where the chordwise flexibility of the foil is modeled by one or two torsional springs along the chord line. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid–structure interactions. We show that the effective flexibility of the combined fluid–structure system scales with the ratio of the added mass forces acting on the passive portion of the foil and the elastic forces defined by the torsional spring hinge. Importantly, by considering this new scaling of the effective flexibility, the propulsive performance is then detailed for a foil with a flexible hinge that is actively pitching about its leading edge. The scaling allows for the resonance frequency of the fluid–structure system and the bending pattern of the propulsor to be independently varied by altering the effective flexibility and the location of a single torsional spring along the chord, respectively. It is shown that increasing the flexion ratio, by moving the spring away from the leading edge, leads to enhanced propulsive efficiency, but compromises the thrust production. Proper combination of two flexible hinges, however, can result in a gain in both the thrust production and propulsive efficiency.
    • Download: (1.885Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Nonuniform Flexibility on Hydrodynamic Performance of Pitching Propulsors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255785
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorZeyghami, Samane
    contributor authorMoored, Keith W.
    date accessioned2019-03-17T09:54:44Z
    date available2019-03-17T09:54:44Z
    date copyright2/8/2019 12:00:00 AM
    date issued2019
    identifier issn0098-2202
    identifier otherfe_141_04_041108.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255785
    description abstractMany aquatic animals propel themselves efficiently through the water by oscillating flexible fins. These fins are, however, not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here, we develop a simple model of these functionally graded materials where the chordwise flexibility of the foil is modeled by one or two torsional springs along the chord line. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid–structure interactions. We show that the effective flexibility of the combined fluid–structure system scales with the ratio of the added mass forces acting on the passive portion of the foil and the elastic forces defined by the torsional spring hinge. Importantly, by considering this new scaling of the effective flexibility, the propulsive performance is then detailed for a foil with a flexible hinge that is actively pitching about its leading edge. The scaling allows for the resonance frequency of the fluid–structure system and the bending pattern of the propulsor to be independently varied by altering the effective flexibility and the location of a single torsional spring along the chord, respectively. It is shown that increasing the flexion ratio, by moving the spring away from the leading edge, leads to enhanced propulsive efficiency, but compromises the thrust production. Proper combination of two flexible hinges, however, can result in a gain in both the thrust production and propulsive efficiency.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Nonuniform Flexibility on Hydrodynamic Performance of Pitching Propulsors
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4041976
    journal fristpage41108
    journal lastpage041108-7
    treeJournal of Fluids Engineering:;2019:;volume( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian