YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Responses of a Slender Wing With a Store

    Source: Journal of Vibration and Acoustics:;2019:;volume( 141 ):;issue: 003::page 31006
    Author:
    Xu, Yuqian
    ,
    Cao, Dengqing
    ,
    Shao, Chonghui
    ,
    Lin, Huagang
    DOI: 10.1115/1.4042276
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The aeroelastic characteristics of the slender wing with store have been studied for several years. However, the nonlinear aeroelastic behaviors of the wing-store system have not been understood thoroughly. In this paper, the nonlinear aeroelastic model of a slender wing with a store is constructed. In the model, the geometric structural nonlinearity of the wing, and the kinematic nonlinearities of the wing and the store are considered. Two unsteady aerodynamic models are both employed to determine the aerodynamic loads. One is the linear unsteady aerodynamic model based on Wagner function, and the other is the nonlinear ONERA aerodynamic model. Simulation results are given to show that for the cases of employing the linear unsteady aerodynamic model based on Wagner function, the bifurcation diagrams are very complex and change with the variations of store position. For the cases of using the nonlinear ONERA model, the bifurcation diagrams are very simple and insensitive to the variations of the store position. Additionally, with the decrease of store spanwise coordinate, the system bending oscillation equilibrium position is reduced to zero, and the maximum absolute value of the bending response peak is also decreased. With the increase of the horizontal distance between the wing elastic center and the store mass center, the system response peak is decreased. Moreover, it is found that for the systems with the linear unsteady aerodynamic model based on Wagner function, the obtained response peak is larger and the nonlinear critical velocity is smaller than those with the ONERA model.
    • Download: (5.098Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Responses of a Slender Wing With a Store

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255761
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorXu, Yuqian
    contributor authorCao, Dengqing
    contributor authorShao, Chonghui
    contributor authorLin, Huagang
    date accessioned2019-03-17T09:53:50Z
    date available2019-03-17T09:53:50Z
    date copyright2/4/2019 12:00:00 AM
    date issued2019
    identifier issn1048-9002
    identifier othervib_141_03_031006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255761
    description abstractThe aeroelastic characteristics of the slender wing with store have been studied for several years. However, the nonlinear aeroelastic behaviors of the wing-store system have not been understood thoroughly. In this paper, the nonlinear aeroelastic model of a slender wing with a store is constructed. In the model, the geometric structural nonlinearity of the wing, and the kinematic nonlinearities of the wing and the store are considered. Two unsteady aerodynamic models are both employed to determine the aerodynamic loads. One is the linear unsteady aerodynamic model based on Wagner function, and the other is the nonlinear ONERA aerodynamic model. Simulation results are given to show that for the cases of employing the linear unsteady aerodynamic model based on Wagner function, the bifurcation diagrams are very complex and change with the variations of store position. For the cases of using the nonlinear ONERA model, the bifurcation diagrams are very simple and insensitive to the variations of the store position. Additionally, with the decrease of store spanwise coordinate, the system bending oscillation equilibrium position is reduced to zero, and the maximum absolute value of the bending response peak is also decreased. With the increase of the horizontal distance between the wing elastic center and the store mass center, the system response peak is decreased. Moreover, it is found that for the systems with the linear unsteady aerodynamic model based on Wagner function, the obtained response peak is larger and the nonlinear critical velocity is smaller than those with the ONERA model.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Responses of a Slender Wing With a Store
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4042276
    journal fristpage31006
    journal lastpage031006-14
    treeJournal of Vibration and Acoustics:;2019:;volume( 141 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian