YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimizing Topology and Gradient Orthotropic Material Properties Under Multiple Loads

    Source: Journal of Computing and Information Science in Engineering:;2019:;volume( 019 ):;issue: 002::page 21007
    Author:
    Garland, Anthony
    ,
    Fadel, Georges
    DOI: 10.1115/1.4041744
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The goal of this research is to optimize an object's macroscopic topology and localized gradient material properties (GMPs) subject to multiple loading conditions simultaneously. The gradient material of each macroscopic cell is modeled as an orthotropic material where the elastic moduli in two local orthogonal directions we call x and y can change. Furthermore, the direction of the local coordinate system can be rotated to align with the loading conditions on each cell. This orthotropic material is similar to a fiber-reinforced material where the number of fibers in the local x and y-directions can change for each cell, and the directions can as well be rotated. Repeating cellular unit cells, which form a mesostructure, can also achieve these customized orthotropic material properties. Homogenization theory allows calculating the macroscopic averaged bulk properties of these cellular materials. By combining topology optimization with gradient material optimization and fiber orientation optimization, the proposed algorithm significantly decreases the objective, which is to minimize the strain energy of the object subject to multiple loading conditions. Additive manufacturing (AM) techniques enable the fabrication of these designs by selectively placing reinforcing fibers or by printing different mesostructures in each region of the design. This work shows a comparison of simple topology optimization, topology optimization with isotropic gradient materials, and topology optimization with orthotropic gradient materials. Finally, a trade-off experiment shows how different optimization parameters, which affect the range of gradient materials used in the design, have an impact on the final objective value of the design. The algorithm presented in this paper offers new insight into how to best take advantage of new AM capabilities to print objects with gradient customizable material properties.
    • Download: (2.739Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimizing Topology and Gradient Orthotropic Material Properties Under Multiple Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255758
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorGarland, Anthony
    contributor authorFadel, Georges
    date accessioned2019-03-17T09:53:44Z
    date available2019-03-17T09:53:44Z
    date copyright2/4/2019 12:00:00 AM
    date issued2019
    identifier issn1530-9827
    identifier otherjcise_019_02_021007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255758
    description abstractThe goal of this research is to optimize an object's macroscopic topology and localized gradient material properties (GMPs) subject to multiple loading conditions simultaneously. The gradient material of each macroscopic cell is modeled as an orthotropic material where the elastic moduli in two local orthogonal directions we call x and y can change. Furthermore, the direction of the local coordinate system can be rotated to align with the loading conditions on each cell. This orthotropic material is similar to a fiber-reinforced material where the number of fibers in the local x and y-directions can change for each cell, and the directions can as well be rotated. Repeating cellular unit cells, which form a mesostructure, can also achieve these customized orthotropic material properties. Homogenization theory allows calculating the macroscopic averaged bulk properties of these cellular materials. By combining topology optimization with gradient material optimization and fiber orientation optimization, the proposed algorithm significantly decreases the objective, which is to minimize the strain energy of the object subject to multiple loading conditions. Additive manufacturing (AM) techniques enable the fabrication of these designs by selectively placing reinforcing fibers or by printing different mesostructures in each region of the design. This work shows a comparison of simple topology optimization, topology optimization with isotropic gradient materials, and topology optimization with orthotropic gradient materials. Finally, a trade-off experiment shows how different optimization parameters, which affect the range of gradient materials used in the design, have an impact on the final objective value of the design. The algorithm presented in this paper offers new insight into how to best take advantage of new AM capabilities to print objects with gradient customizable material properties.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimizing Topology and Gradient Orthotropic Material Properties Under Multiple Loads
    typeJournal Paper
    journal volume19
    journal issue2
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.4041744
    journal fristpage21007
    treeJournal of Computing and Information Science in Engineering:;2019:;volume( 019 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian