YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Use of Symmetries in Building Surrogate Models

    Source: Journal of Mechanical Design:;2019:;volume( 141 ):;issue: 006::page 61402
    Author:
    Giselle Fernández-Godino, M.
    ,
    Balachandar, S.
    ,
    Haftka, Raphael T.
    DOI: 10.1115/1.4042047
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: When simulations are expensive and multiple realizations are necessary, as is the case in uncertainty propagation, statistical inference, and optimization, surrogate models can achieve accurate predictions at low computational cost. In this paper, we explore options for improving the accuracy of a surrogate if the modeled phenomenon presents symmetries. These symmetries allow us to obtain free information and, therefore, the possibility of more accurate predictions. We present an analytical example along with a physical example that has parametric symmetries. Although imposing parametric symmetries in surrogate models seems to be a trivial matter, there is not a single way to do it and, furthermore, the achieved accuracy might vary. We present four different ways of using symmetry in surrogate models. Three of them are straightforward, but the fourth is original and based on an optimization of the subset of points used. The performance of the options was compared with 100 random designs of experiments (DoEs) where symmetries were not imposed. We found that each of the options to include symmetries performed the best in one or more of the studied cases and, in all cases, the errors obtained imposing symmetries were substantially smaller than the worst cases among the 100. We explore the options for using symmetries in two surrogates that present different challenges and opportunities: Kriging and linear regression. Kriging is often used as a black box; therefore, we consider approaches to include the symmetries without changes in the main code. On the other hand, since linear regression is often built by the user; owing to its simplicity, we consider also approaches that modify the linear regression basis functions to impose the symmetries.
    • Download: (3.123Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Use of Symmetries in Building Surrogate Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255728
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorGiselle Fernández-Godino, M.
    contributor authorBalachandar, S.
    contributor authorHaftka, Raphael T.
    date accessioned2019-03-17T09:51:38Z
    date available2019-03-17T09:51:38Z
    date copyright1/31/2019 12:00:00 AM
    date issued2019
    identifier issn1050-0472
    identifier othermd_141_06_061402.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255728
    description abstractWhen simulations are expensive and multiple realizations are necessary, as is the case in uncertainty propagation, statistical inference, and optimization, surrogate models can achieve accurate predictions at low computational cost. In this paper, we explore options for improving the accuracy of a surrogate if the modeled phenomenon presents symmetries. These symmetries allow us to obtain free information and, therefore, the possibility of more accurate predictions. We present an analytical example along with a physical example that has parametric symmetries. Although imposing parametric symmetries in surrogate models seems to be a trivial matter, there is not a single way to do it and, furthermore, the achieved accuracy might vary. We present four different ways of using symmetry in surrogate models. Three of them are straightforward, but the fourth is original and based on an optimization of the subset of points used. The performance of the options was compared with 100 random designs of experiments (DoEs) where symmetries were not imposed. We found that each of the options to include symmetries performed the best in one or more of the studied cases and, in all cases, the errors obtained imposing symmetries were substantially smaller than the worst cases among the 100. We explore the options for using symmetries in two surrogates that present different challenges and opportunities: Kriging and linear regression. Kriging is often used as a black box; therefore, we consider approaches to include the symmetries without changes in the main code. On the other hand, since linear regression is often built by the user; owing to its simplicity, we consider also approaches that modify the linear regression basis functions to impose the symmetries.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Use of Symmetries in Building Surrogate Models
    typeJournal Paper
    journal volume141
    journal issue6
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4042047
    journal fristpage61402
    journal lastpage061402-14
    treeJournal of Mechanical Design:;2019:;volume( 141 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian