YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flow Behavior in Radial Vane Disk Brake Rotors at Low Rotational Speeds

    Source: Journal of Fluids Engineering:;2019:;volume( 141 ):;issue: 008::page 81105
    Author:
    Atkins, Michael D.
    ,
    Kienhöfer, Frank W.
    ,
    Kim, Tongbeum
    DOI: 10.1115/1.4042470
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The flow behavior through the vented channel of a brake disk determines its thermal performance, viz. its resistance to brake fade, brake wear, thermal distortion, and thermal cracking. We present experimental results of the flow characteristics inside the vented channel of a radial vane brake rotor with a selected number of vanes (i.e., 18, 36, and 72) but constant porosity (ε ∼ 0.8) at low rotational speeds (i.e., 25 rpm ≤ N ≤ 400 rpm). Using bulk flow and velocity field mapping measurement techniques, we observed that increasing the number of vanes for a given rotational speed results in (i) the increase in the mass flow rate of the air pumped by the rotor, (ii) the reduction of inflow angle (β) becoming more closely aligned with the vanes, (iii) more uniformly distributed passage velocity profiles, and (iv) increased Rossby number. In addition, for a certain range of rotational speeds (i.e., 100 rpm ≤ N ≤ 400 rpm), we identified the biased development of streamwise secondary flow structures in the vented passages that only form on the inboard side of the rotor. This is due to the entry conditions where the incoming flow must transition sharply from the axial to the radial direction as air is drawn into the rotating channel. The biased secondary flow is likely to cause uneven cooling of the brake rotor, leading to thermal distortion. At lower rotational speeds (i.e., N < 100 rpm), the biased secondary flows transitions into a symmetric structure.
    • Download: (3.822Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flow Behavior in Radial Vane Disk Brake Rotors at Low Rotational Speeds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255693
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorAtkins, Michael D.
    contributor authorKienhöfer, Frank W.
    contributor authorKim, Tongbeum
    date accessioned2019-03-17T09:48:32Z
    date available2019-03-17T09:48:32Z
    date copyright1/30/2019 12:00:00 AM
    date issued2019
    identifier issn0098-2202
    identifier otherfe_141_08_081105.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255693
    description abstractThe flow behavior through the vented channel of a brake disk determines its thermal performance, viz. its resistance to brake fade, brake wear, thermal distortion, and thermal cracking. We present experimental results of the flow characteristics inside the vented channel of a radial vane brake rotor with a selected number of vanes (i.e., 18, 36, and 72) but constant porosity (ε ∼ 0.8) at low rotational speeds (i.e., 25 rpm ≤ N ≤ 400 rpm). Using bulk flow and velocity field mapping measurement techniques, we observed that increasing the number of vanes for a given rotational speed results in (i) the increase in the mass flow rate of the air pumped by the rotor, (ii) the reduction of inflow angle (β) becoming more closely aligned with the vanes, (iii) more uniformly distributed passage velocity profiles, and (iv) increased Rossby number. In addition, for a certain range of rotational speeds (i.e., 100 rpm ≤ N ≤ 400 rpm), we identified the biased development of streamwise secondary flow structures in the vented passages that only form on the inboard side of the rotor. This is due to the entry conditions where the incoming flow must transition sharply from the axial to the radial direction as air is drawn into the rotating channel. The biased secondary flow is likely to cause uneven cooling of the brake rotor, leading to thermal distortion. At lower rotational speeds (i.e., N < 100 rpm), the biased secondary flows transitions into a symmetric structure.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFlow Behavior in Radial Vane Disk Brake Rotors at Low Rotational Speeds
    typeJournal Paper
    journal volume141
    journal issue8
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4042470
    journal fristpage81105
    journal lastpage081105-13
    treeJournal of Fluids Engineering:;2019:;volume( 141 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian