YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting Leak Rate Through Valve Stem Packing in Nuclear Applications

    Source: Journal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 001::page 11009
    Author:
    Aweimer, Ali Salah Omar
    ,
    Bouzid, Abdel-Hakim
    ,
    Kazeminia, Mehdi
    DOI: 10.1115/1.4040493
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Leaking valves have forced shutdown in many nuclear power plants. The myth of zero leakage or adequate sealing must give way to more realistic maximum leak rate criterion in design of nuclear bolted flange joints and valve packed stuffing boxes. It is well established that the predicting leakage in these pressure vessel components is a major engineering challenge to designers. This is particularly true in nuclear valves due to different working conditions and material variations. The prediction of the leak rate through packing rings is not a straightforward task to achieve. This work presents a study on the ability of microchannel flow models to predict leak rates through packing rings made of flexible graphite. A methodology based on experimental characterization of packing material porosity parameters is developed to predict leak rates at different compression stress levels. Three different models are compared to predict leakage; the diffusive and second-order flow models are derived from Naiver–Stokes equations and incorporate the boundary conditions of an intermediate flow regime to cover the wide range of leak rate levels and the lattice model is based on porous media of packing rings as packing bed (Dp). The flow porosity parameters (N, R) of the microchannels assumed to simulate the leak paths present in the packing are obtained experimentally. The predicted leak rates from different gases (He, N2, and Ar) are compared to those measured experimentally in which the set of packing rings is mainly subjected to different gland stresses and pressures.
    • Download: (1.309Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting Leak Rate Through Valve Stem Packing in Nuclear Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255617
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorAweimer, Ali Salah Omar
    contributor authorBouzid, Abdel-Hakim
    contributor authorKazeminia, Mehdi
    date accessioned2019-03-17T09:41:16Z
    date available2019-03-17T09:41:16Z
    date copyright1/24/2019 12:00:00 AM
    date issued2019
    identifier issn2332-8983
    identifier otherners_005_01_011009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255617
    description abstractLeaking valves have forced shutdown in many nuclear power plants. The myth of zero leakage or adequate sealing must give way to more realistic maximum leak rate criterion in design of nuclear bolted flange joints and valve packed stuffing boxes. It is well established that the predicting leakage in these pressure vessel components is a major engineering challenge to designers. This is particularly true in nuclear valves due to different working conditions and material variations. The prediction of the leak rate through packing rings is not a straightforward task to achieve. This work presents a study on the ability of microchannel flow models to predict leak rates through packing rings made of flexible graphite. A methodology based on experimental characterization of packing material porosity parameters is developed to predict leak rates at different compression stress levels. Three different models are compared to predict leakage; the diffusive and second-order flow models are derived from Naiver–Stokes equations and incorporate the boundary conditions of an intermediate flow regime to cover the wide range of leak rate levels and the lattice model is based on porous media of packing rings as packing bed (Dp). The flow porosity parameters (N, R) of the microchannels assumed to simulate the leak paths present in the packing are obtained experimentally. The predicted leak rates from different gases (He, N2, and Ar) are compared to those measured experimentally in which the set of packing rings is mainly subjected to different gland stresses and pressures.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePredicting Leak Rate Through Valve Stem Packing in Nuclear Applications
    typeJournal Paper
    journal volume5
    journal issue1
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4040493
    journal fristpage11009
    journal lastpage011009-7
    treeJournal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian