New Exploration on TMSR: Redesign of the TMSR LatticeSource: Journal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 001::page 11008DOI: 10.1115/1.4041192Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Molten salt reactor (MSR) has been recognized as one of the next-generation nuclear power systems. Most MSR concepts are the variants evolved from the Oak Ridge National Laboratory (ORNL's) molten-salt breeder reactor (MSBR), which employs molten-salt as both fuel and coolant, and normally graphite is used as moderator. Many evaluations have revealed that such concepts have low breeding ratio and might present positive power coefficient. Facing these impediments, thorium molten salt reactor (TMSR) with redesigned lattice is proposed in this paper. Based on comprehensive investigation and screening, important lattice parameters including molten salt fuel composition, solid moderator material, lattice size, structure and lattice pitch to channel diameter (P/D) ratio are redesigned. In this paper, a fuel composition without BeF2 is adopted to increase the solubility for actinides (ThF4, UF4), and BeO is introduced as moderator to improve neutron economy. Moreover, lattice size and structure with cladding to separate fuel and moderator were also optimized. With these lattice parameters, TMSR has a high breeding ratio close to 1.14 and a short doubling time about 15 years. Meanwhile, a negative power coefficient is maintained. Based on this lattice design, TMSR can have excellent performance of safety and sustainability. SONG/TANG-MSR codes system is applied in the simulation, which is independently developed by Shanghai Nuclear Engineering Research & Design Institute (SNERDI).
|
Show full item record
contributor author | Zhao, J. K. | |
contributor author | Si, S. Y. | |
contributor author | Chen, Q. C. | |
contributor author | Bei, H. | |
date accessioned | 2019-03-17T09:41:14Z | |
date available | 2019-03-17T09:41:14Z | |
date copyright | 1/24/2019 12:00:00 AM | |
date issued | 2019 | |
identifier issn | 2332-8983 | |
identifier other | ners_005_01_011008.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4255616 | |
description abstract | Molten salt reactor (MSR) has been recognized as one of the next-generation nuclear power systems. Most MSR concepts are the variants evolved from the Oak Ridge National Laboratory (ORNL's) molten-salt breeder reactor (MSBR), which employs molten-salt as both fuel and coolant, and normally graphite is used as moderator. Many evaluations have revealed that such concepts have low breeding ratio and might present positive power coefficient. Facing these impediments, thorium molten salt reactor (TMSR) with redesigned lattice is proposed in this paper. Based on comprehensive investigation and screening, important lattice parameters including molten salt fuel composition, solid moderator material, lattice size, structure and lattice pitch to channel diameter (P/D) ratio are redesigned. In this paper, a fuel composition without BeF2 is adopted to increase the solubility for actinides (ThF4, UF4), and BeO is introduced as moderator to improve neutron economy. Moreover, lattice size and structure with cladding to separate fuel and moderator were also optimized. With these lattice parameters, TMSR has a high breeding ratio close to 1.14 and a short doubling time about 15 years. Meanwhile, a negative power coefficient is maintained. Based on this lattice design, TMSR can have excellent performance of safety and sustainability. SONG/TANG-MSR codes system is applied in the simulation, which is independently developed by Shanghai Nuclear Engineering Research & Design Institute (SNERDI). | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | New Exploration on TMSR: Redesign of the TMSR Lattice | |
type | Journal Paper | |
journal volume | 5 | |
journal issue | 1 | |
journal title | Journal of Nuclear Engineering and Radiation Science | |
identifier doi | 10.1115/1.4041192 | |
journal fristpage | 11008 | |
journal lastpage | 011008-5 | |
tree | Journal of Nuclear Engineering and Radiation Science:;2019:;volume( 005 ):;issue: 001 | |
contenttype | Fulltext |