YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation on Labyrinth Seal Leakage Flow and Its Effects on Aerodynamic Performance for a Multistage Centrifugal Compressor

    Source: Journal of Fluids Engineering:;2019:;volume( 141 ):;issue: 007::page 71107
    Author:
    Qiao, Bing
    ,
    Ju, Yaping
    ,
    Zhang, Chuhua
    DOI: 10.1115/1.4042370
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Labyrinth seals are widely used in industrial centrifugal compressors to reduce leakage. However, no work has been conducted to numerically investigate the detailed seal leakage flow and its effects in an environment of multistage centrifugal compressor. To clarify the flow mechanism of leakage flow and the interaction mechanism between leakage and mainstream flow in multistage centrifugal compressors, the flow of the last two stages from a four-stage centrifugal compressor is studied using computational fluid dynamics (CFD) model with and without considerations of labyrinth seal leakage paths, i.e., two shroud seals, one interstage seal, and one balance piston seal. The results show that the leakage flow in shroud and hub cavities can be described as a Batchelor-type flow. The Ekman number of the cavity Batchelor flow is small and corresponds to thin boundary layers while the Rossby number is at unity order implying the importance of rotating effects. The leakage flow through the shroud, interstage, and balance piston labyrinth seals is decreased by the combined effects of throttling and diffusion flow, and has distinctive flow structures associated with the type of labyrinth seal. The influence of leakage flow on the mainstream flow can be described by suction or injection mode. The suction mode is beneficial to the improvement of mainstream flow quality while the injection mode is harmful. This work is of scientific significance to enrich the knowledge of internal fluid mechanics and of potential application value to control and design the leakage flow in real configurations of multistage centrifugal compressors.
    • Download: (4.758Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation on Labyrinth Seal Leakage Flow and Its Effects on Aerodynamic Performance for a Multistage Centrifugal Compressor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255600
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorQiao, Bing
    contributor authorJu, Yaping
    contributor authorZhang, Chuhua
    date accessioned2019-03-17T09:39:17Z
    date available2019-03-17T09:39:17Z
    date copyright1/23/2019 12:00:00 AM
    date issued2019
    identifier issn0098-2202
    identifier otherfe_141_07_071107.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255600
    description abstractLabyrinth seals are widely used in industrial centrifugal compressors to reduce leakage. However, no work has been conducted to numerically investigate the detailed seal leakage flow and its effects in an environment of multistage centrifugal compressor. To clarify the flow mechanism of leakage flow and the interaction mechanism between leakage and mainstream flow in multistage centrifugal compressors, the flow of the last two stages from a four-stage centrifugal compressor is studied using computational fluid dynamics (CFD) model with and without considerations of labyrinth seal leakage paths, i.e., two shroud seals, one interstage seal, and one balance piston seal. The results show that the leakage flow in shroud and hub cavities can be described as a Batchelor-type flow. The Ekman number of the cavity Batchelor flow is small and corresponds to thin boundary layers while the Rossby number is at unity order implying the importance of rotating effects. The leakage flow through the shroud, interstage, and balance piston labyrinth seals is decreased by the combined effects of throttling and diffusion flow, and has distinctive flow structures associated with the type of labyrinth seal. The influence of leakage flow on the mainstream flow can be described by suction or injection mode. The suction mode is beneficial to the improvement of mainstream flow quality while the injection mode is harmful. This work is of scientific significance to enrich the knowledge of internal fluid mechanics and of potential application value to control and design the leakage flow in real configurations of multistage centrifugal compressors.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation on Labyrinth Seal Leakage Flow and Its Effects on Aerodynamic Performance for a Multistage Centrifugal Compressor
    typeJournal Paper
    journal volume141
    journal issue7
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4042370
    journal fristpage71107
    journal lastpage071107-12
    treeJournal of Fluids Engineering:;2019:;volume( 141 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian