YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling and Analysis of Piezoelectric Energy Harvesting With Dynamic Plucking Mechanism

    Source: Journal of Vibration and Acoustics:;2019:;volume( 141 ):;issue: 003::page 31002
    Author:
    Fu, Xinlei
    ,
    Liao, Wei-Hsin
    DOI: 10.1115/1.4042002
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Nonharmonic excitations are widely distributed in the environment. They can work as energy sources of vibration energy harvesters for powering wireless electronics. To overcome the narrow bandwidth of linear vibration energy harvesters, plucking piezoelectric energy harvesters have been designed. Plucking piezoelectric energy harvesters can convert sporadic motions into plucking force to excite vibration energy harvesters and achieve broadband performances. Though different kinds of plucking piezoelectric energy harvesters have been designed, the plucking mechanism is not well understood. The simplified models of plucking piezoelectric energy harvesting neglect the dynamic interaction between the plectrum and the piezoelectric beam. This research work is aimed at investigating the plucking mechanism and developing a comprehensive model of plucking piezoelectric energy harvesting. In this paper, the dynamic plucking mechanism is investigated and the Hertzian contact theory is applied. The developed model of plucking piezoelectric energy harvesting accounts for the dynamic interaction between the plectrum and the piezoelectric beam by considering contact theory. Experimental results show that the developed model well predicts the responses of plucking piezoelectric energy harvesters under different plucking velocities and overlap lengths. Parametric studies are conducted on the dimensionless model after choosing appropriate scaling. The influences of plucking velocity and overlap length on energy harvesting performance and energy conversion efficiency are discussed. The comprehensive model helps investigate the characteristics and guide the design of plucking piezoelectric energy harvesters.
    • Download: (2.382Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling and Analysis of Piezoelectric Energy Harvesting With Dynamic Plucking Mechanism

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255594
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorFu, Xinlei
    contributor authorLiao, Wei-Hsin
    date accessioned2019-03-17T09:39:01Z
    date available2019-03-17T09:39:01Z
    date copyright1/22/2019 12:00:00 AM
    date issued2019
    identifier issn1048-9002
    identifier othervib_141_03_031002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255594
    description abstractNonharmonic excitations are widely distributed in the environment. They can work as energy sources of vibration energy harvesters for powering wireless electronics. To overcome the narrow bandwidth of linear vibration energy harvesters, plucking piezoelectric energy harvesters have been designed. Plucking piezoelectric energy harvesters can convert sporadic motions into plucking force to excite vibration energy harvesters and achieve broadband performances. Though different kinds of plucking piezoelectric energy harvesters have been designed, the plucking mechanism is not well understood. The simplified models of plucking piezoelectric energy harvesting neglect the dynamic interaction between the plectrum and the piezoelectric beam. This research work is aimed at investigating the plucking mechanism and developing a comprehensive model of plucking piezoelectric energy harvesting. In this paper, the dynamic plucking mechanism is investigated and the Hertzian contact theory is applied. The developed model of plucking piezoelectric energy harvesting accounts for the dynamic interaction between the plectrum and the piezoelectric beam by considering contact theory. Experimental results show that the developed model well predicts the responses of plucking piezoelectric energy harvesters under different plucking velocities and overlap lengths. Parametric studies are conducted on the dimensionless model after choosing appropriate scaling. The influences of plucking velocity and overlap length on energy harvesting performance and energy conversion efficiency are discussed. The comprehensive model helps investigate the characteristics and guide the design of plucking piezoelectric energy harvesters.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling and Analysis of Piezoelectric Energy Harvesting With Dynamic Plucking Mechanism
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4042002
    journal fristpage31002
    journal lastpage031002-9
    treeJournal of Vibration and Acoustics:;2019:;volume( 141 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian