YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of the Leakage and Rotordynamic Coefficients of a Long-Smooth Seal With Two-Phase, Mainly Oil Mixtures

    Source: Journal of Tribology:;2019:;volume( 141 ):;issue: 004::page 42201
    Author:
    Zhang, Min
    ,
    Childs, Dara W.
    ,
    Mclean, Jr., James E.
    ,
    Tran, Dung L.
    ,
    Shrestha, Hari
    DOI: 10.1115/1.4042272
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper experimentally studies the leakage and rotordynamic performance of a long-smooth seal with air–oil mixtures. Tests are performed with inlet gas-volume-fraction gas volume fraction (GVF) = 0%, 2%, 4%, 6%, and 10%, rotor speed ω = 5, 7.5, 10, and 15 krpm, inlet temperature Ti = 39.4 °C, exit pressure Pe = 6.9 bars, and pressure drop (PD) = 31, 37.9, and 48.3 bars. Test results show that adding air into the oil flow does not change the seal's mass flow leakage m˙ discernibly but significantly impacts the seal's rotordynamic characteristics. For all PDs and speeds, K increases as inlet GVF increases from zero to 10% except for 6% ≤ inlet GVF ≤ 10% when PD = 48.3 bars, where K decreases as inlet GVF increases. The K increment will increase a pump rotor's natural frequency and critical speed. Increasing the rotor's natural frequency would also increase the onset speed of instability (OSI) and improve the stability of the rotor. Adding air into the oil flow has little impact on cross-coupled stiffness k, direct damping C, and effective damping Ceff. Ceff = C − k/ω + mqω, where mq is the cross-coupled virtual-mass. Test results are compared to predictions from San Andrés's (San Andrés, 2011, “Rotordynamic Force Coefficients of Bubbly Mixture Annular Pressure Seals,” ASME J. Eng. Gas Turbines Power, 134(2), p. 022503.) bulk-flow model, which assumes that the liquid–gas mixture is isothermal and homogenous. The model reasonably predicts m˙, C, and Ceff. All predicted K values are positive, while measured K values are negative for some test cases. Predicted k values are close to measurements when ω = 5 krpm and are larger than measurements when 7.5 ≤ ω ≤ 15 krpm.
    • Download: (4.207Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of the Leakage and Rotordynamic Coefficients of a Long-Smooth Seal With Two-Phase, Mainly Oil Mixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255591
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorZhang, Min
    contributor authorChilds, Dara W.
    contributor authorMclean, Jr., James E.
    contributor authorTran, Dung L.
    contributor authorShrestha, Hari
    date accessioned2019-03-17T09:38:47Z
    date available2019-03-17T09:38:47Z
    date copyright1/22/2019 12:00:00 AM
    date issued2019
    identifier issn0742-4787
    identifier othertrib_141_04_042201.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255591
    description abstractThis paper experimentally studies the leakage and rotordynamic performance of a long-smooth seal with air–oil mixtures. Tests are performed with inlet gas-volume-fraction gas volume fraction (GVF) = 0%, 2%, 4%, 6%, and 10%, rotor speed ω = 5, 7.5, 10, and 15 krpm, inlet temperature Ti = 39.4 °C, exit pressure Pe = 6.9 bars, and pressure drop (PD) = 31, 37.9, and 48.3 bars. Test results show that adding air into the oil flow does not change the seal's mass flow leakage m˙ discernibly but significantly impacts the seal's rotordynamic characteristics. For all PDs and speeds, K increases as inlet GVF increases from zero to 10% except for 6% ≤ inlet GVF ≤ 10% when PD = 48.3 bars, where K decreases as inlet GVF increases. The K increment will increase a pump rotor's natural frequency and critical speed. Increasing the rotor's natural frequency would also increase the onset speed of instability (OSI) and improve the stability of the rotor. Adding air into the oil flow has little impact on cross-coupled stiffness k, direct damping C, and effective damping Ceff. Ceff = C − k/ω + mqω, where mq is the cross-coupled virtual-mass. Test results are compared to predictions from San Andrés's (San Andrés, 2011, “Rotordynamic Force Coefficients of Bubbly Mixture Annular Pressure Seals,” ASME J. Eng. Gas Turbines Power, 134(2), p. 022503.) bulk-flow model, which assumes that the liquid–gas mixture is isothermal and homogenous. The model reasonably predicts m˙, C, and Ceff. All predicted K values are positive, while measured K values are negative for some test cases. Predicted k values are close to measurements when ω = 5 krpm and are larger than measurements when 7.5 ≤ ω ≤ 15 krpm.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Study of the Leakage and Rotordynamic Coefficients of a Long-Smooth Seal With Two-Phase, Mainly Oil Mixtures
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Tribology
    identifier doi10.1115/1.4042272
    journal fristpage42201
    journal lastpage042201-9
    treeJournal of Tribology:;2019:;volume( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian