YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of a Steady-State Experimental Facility for the Analysis of Double-Wall Effusion Cooling Geometries

    Source: Journal of Turbomachinery:;2019:;volume( 141 ):;issue: 004::page 41008
    Author:
    Murray, Alexander V.
    ,
    Ireland, Peter T.
    ,
    Romero, Eduardo
    DOI: 10.1115/1.4041751
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The continuous drive for ever higher turbine entry temperatures is leading to considerable interest in high performance cooling systems which offer high cooling effectiveness with low coolant utilization. The double-wall system is an optimized amalgamation of more conventional cooling methods including impingement cooling, pedestals, and film cooling holes in closely packed arrays characteristic of effusion cooling. The system comprises two walls, one with impingement holes, and the other with film holes. These are mechanically connected via pedestals allowing conduction between the walls while increasing coolant-wetted area and turbulent flow. However, in the open literature, experimental data on such systems are sparse. This study presents a new experimental heat transfer facility designed for investigating double-wall systems. Key features of the facility are discussed, including the use of infrared thermography to obtain overall cooling effectiveness measurements. The facility is designed to achieve Reynolds and Biot (to within 10%) number similarity to those seen at engine conditions. The facility is used to obtain overall cooling effectiveness measurements for a circular pedestal, double-wall test piece at three coolant mass-flows. A conjugate computational fluid dynamics (CFD) model of the facility was developed providing insight into the internal flow features. Additionally, a computationally efficient, decoupled conjugate method developed by the authors for analyzing double-wall systems is run at the experimental conditions. The results of the simulations are encouraging, particularly given how computationally efficient the method is, with area-weighted, averaged overall effectiveness within a small margin of those obtained from the experimental facility.
    • Download: (4.562Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of a Steady-State Experimental Facility for the Analysis of Double-Wall Effusion Cooling Geometries

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255555
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorMurray, Alexander V.
    contributor authorIreland, Peter T.
    contributor authorRomero, Eduardo
    date accessioned2019-03-17T09:34:24Z
    date available2019-03-17T09:34:24Z
    date copyright1/21/2019 12:00:00 AM
    date issued2019
    identifier issn0889-504X
    identifier otherturbo_141_04_041008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255555
    description abstractThe continuous drive for ever higher turbine entry temperatures is leading to considerable interest in high performance cooling systems which offer high cooling effectiveness with low coolant utilization. The double-wall system is an optimized amalgamation of more conventional cooling methods including impingement cooling, pedestals, and film cooling holes in closely packed arrays characteristic of effusion cooling. The system comprises two walls, one with impingement holes, and the other with film holes. These are mechanically connected via pedestals allowing conduction between the walls while increasing coolant-wetted area and turbulent flow. However, in the open literature, experimental data on such systems are sparse. This study presents a new experimental heat transfer facility designed for investigating double-wall systems. Key features of the facility are discussed, including the use of infrared thermography to obtain overall cooling effectiveness measurements. The facility is designed to achieve Reynolds and Biot (to within 10%) number similarity to those seen at engine conditions. The facility is used to obtain overall cooling effectiveness measurements for a circular pedestal, double-wall test piece at three coolant mass-flows. A conjugate computational fluid dynamics (CFD) model of the facility was developed providing insight into the internal flow features. Additionally, a computationally efficient, decoupled conjugate method developed by the authors for analyzing double-wall systems is run at the experimental conditions. The results of the simulations are encouraging, particularly given how computationally efficient the method is, with area-weighted, averaged overall effectiveness within a small margin of those obtained from the experimental facility.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDevelopment of a Steady-State Experimental Facility for the Analysis of Double-Wall Effusion Cooling Geometries
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4041751
    journal fristpage41008
    journal lastpage041008-10
    treeJournal of Turbomachinery:;2019:;volume( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian